Answer:

Explanation:
= Cambio en la longitud de la cuerda = 0.25 cm
T = tensión en cuerda
A = Área de la cadena = 
d = Diámetro de la cuerda = 0.2 cm
L = Longitud original de la cuerda = 1.6 m
El cambio de longitud de una cuerda viene dado por

La tensión en la cuerda es
.
Answer:
F = 19.1 N
Explanation:
To find the force exerted by the string on the block you use the following formula:
(1)
k: spring constant = 95.5 N/m
x: displacement of the block from its equilibrium position = 0.200 m
you replace the values of k and x in the equation (1):

Hence, the force exterted on the block is 19.1 N
Empirical formula of compound is XF3
Compound consist of 65% F
In 100g of compound there is 65 g of F
= 65 / 19 moles of Fluorine = 3.421 moles
So moles of X = 3.421 / 3 = 1.140 moles
And in 100 g X
consist of 35 g
So the molar mass of X = 35 / 1.140 = 30.71 g = 31
approximately
And it is the mass of phosphorus
So the empirical formula for the compound is PX3
Answer:
From the equation ΣF = ma, one can say that the mass is 1800 kg, and the acceleration of gravity is -9.8 meters. Multiply those together and it is -17640 newtons.
Explanation:
plz send a brainleast
Answer:
h = 3.10 m
Explanation:
As we know that after each bounce it will lose its 11% of energy
So remaining energy after each bounce is 89%
so let say its initial energy is E
so after first bounce the energy is

after 2nd bounce the energy is

After third bounce the energy is

here initial energy is given as

now let say final height is "h" so after third bounce the energy is given as

now from above equation we have



