<span>if we assume the origin is at the dropping point and the object is merely dropped and not thrown up or down then y0 = 0 and v0 = 0. The equation reduces to </span>
<span>y = 0 + 0t + ½gt² </span>
<span>y = ½gt² </span>
<span>t = √(2y/g) </span>
<span>in the ft - lb - s system </span>
<span>y = -100 ft </span>
<span>g = -32.2 ft / s² </span>
<span>t = √(2y/g) </span>
<span>t = √(2(-100) / (-32.2)) </span>
<span>t = 2.5 s</span>
Answer:
Current, I = 0.000109 Amps
Explanation:
Given the following data;
Voltage = 6V
Resistance = 55,000 Ohms
To find the current flowing through the circuit;
Ohm's law states that at constant temperature, the current flowing in an electrical circuit is directly proportional to the voltage applied across the two points and inversely proportional to the resistance in the electrical circuit.
Mathematically, Ohm's law is given by the formula;
Where;
V represents voltage measured in voltage.
I represents current measured in amperes.
R represents resistance measured in ohms.
Making current the subject of formula, we have;
Substituting into the formula, we have;
Current, I = 0.000109 Amps
it allows only a reduced number of electrons to flow through it.