Answer:
Waves. Refraction is an effect that occurs when a light wave, incident at an angle away from the normal, passes a boundary from one medium into another in which there is a change in velocity of the light. ... The wavelength decreases as the light enters the medium and the light wave changes direction.
Explanation:
As a wavelength increases in size, its frequency and energy (E) decrease. From these equations you may realize that as the frequency increases, the wavelength gets shorter. ... Mechanical and electromagnetic waves with long wavelengths contain less energy than waves with short wavelengths.
Answer:
option (d)
Explanation:
The relation between the rms velocity and the molecular mass is given by
v proportional to \frac{1}{\sqrt{M}} keeping the temperature constant
So for two gases
Answer:
6.0 m/s
Explanation:
According to the law of conservation of energy, the total mechanical energy (potential, PE, + kinetic, KE) of the athlete must be conserved.
Therefore, we can write:
or
where:
m is the mass of the athlete
u is the initial speed of the athlete (at the bottom)
0 is the initial potential energy of the athlete (at the bottom)
v = 0.80 m/s is the final speed of the athlete (at the top)
is the acceleration due to gravity
h = 1.80 m is the final height of the athlete (at the top)
Solving the equation for u, we find the initial speed at which the athlete must jump:
B student 2 because you add
Answer: the most potential energy == 5 kg book, 2 m from the ground= 98 Joules
Explanation:
potential energy = m g h
m = mass
g = acceleration due gravity = 9.8 m/s²
h = distance above ground
1. Pe₁ = 1 kg x 2 m x g = 2 g
2. Pe₂ = 5 kg x 2 m x g = 10 g = 10 kg m x 9,8 m/s² = 98 Joules
3. Pe₃ = 1 kg x 0,5 m x g = 0,5 g
4. Pe₄ = 5 kg x 0.5 m x g = 2,5 g
10 > 2,5 > 2 >0,5