The question is incomplete, here is the complete question:
Silicon reacts with carbon dioxide to form silicon carbide and silicon dioxide. Write the balanced chemical equation.
<u>Answer:</u> The balanced chemical equation is written below.
<u>Explanation:</u>
Every balanced chemical equation follows law of conservation of mass.
A balanced chemical equation is defined as the equation in which total number of individual atoms on the reactant side is equal to the total number of individual atoms on product side.
The balanced chemical equation for the reaction of silicon and carbon dioxide follows:

By Stoichiometry of the reaction:
2 moles of silicon reacts with 1 mole of carbon dioxide gas to produce 1 mole of silicon carbide and 1 mole of silicon dioxide
Hence, the balanced chemical equation is written above.
<u>We are given:</u>
Mass of NaCl in the given solution = 22.3 grams
Volume of the given solution = 2 L
<u></u>
<u>Number of Moles of NaCl:</u>
We know that the number of moles = Given mass / Molar mass
Number of moles = 22.3 / 58.44 = 0.382 moles
<u></u>
<u>Molarity of NaCl in the Given solution:</u>
We know that Molarity of a solution = Moles of Solute / Volume of Solution(in L)
Molarity = 0.382 / 2
Molarity = 0.191 M
<em />
Here are 4 physical Properties of lanthanum
its
soft
malleable
ductile
and silver white colored metal.
To determine the mass of xenon tetrafluoride, we need to know first the number of fluorine atoms present in <span>oxygen difluoride. We need to convert first the mass into moles then make use of the relation of the elements from the chemical formula. Then, use the avogadro's number to convert it to number of atoms. Then, we do the reverse of the steps above but this time for </span><span>xenon tetrafluoride.
25.0 g OF2 ( 1 mol / 54 g ) ( 2 mol F / 1 mol OF2 ) ( 6.022 x10^23 atoms F / 1 mol F ) ( 1 mol / 6.022x10^23 atoms) ( 1 mol XeF4 / 4 mol F ) (207.3 g / 1 mol XeF4) = 47.99 g XeF4</span>
Hey there!
Given the reaction:
P4 + 10 Cl2 ------------------ 4 PCl5
Molar mass P4 = 124 g/mol
Number of moles P4:
n = mass of solute / molar mass
n = 24.0 / 124
n = 0.1935 moles of P4
Therefore:
1 mole P4 --------------- 4 moles PCl5
0.1935 moles P4 ------- moles PCl5
moles PCl5 = 0.1935 * 4
= 0.774 moles of PCl5
Hope that helps!