In order to determine the acceleration of the block, use the following formula:

Moreover, remind that for an object attached to a spring the magnitude of the force acting over a mass is given by:

Then, you have:

by solving for a, you obtain:

In this case, you have:
k: spring constant = 100N/m
m: mass of the block = 200g = 0.2kg
x: distance related to the equilibrium position = 14cm - 12cm = 2cm = 0.02m
Replace the previous values of the parameters into the expression for a:

Hence, the acceleration of the block is 10 m/s^2
Answer:
The combination of cells in which the negative terminal of a first cell is connected with the positive terminal of second cell and the negative terminal of a second cell is connected to the positive terminal of a third cell and so on is known as series combination of cells.
Explanation:
hope this helps to u
Recall the formula,
∆<em>θ</em> = <em>ω</em>₀ <em>t</em> + 1/2 <em>α</em> <em>t</em> ²
where ∆<em>θ</em> = angular displacement, <em>ω</em>₀ = initial angular speed (which is zero because the disk starts at rest), <em>α</em> = angular acceleration, and <em>t</em> = time. Solve for the acceleration with the given information:
50 rad = 1/2 <em>α</em> (5 s)²
<em>α</em> = (100 rad) / (25 s²)
<em>α</em> = 4 rad/s²
Now find the angular speed <em>ω </em>after 3 s using the formula,
<em>ω</em> = <em>ω</em>₀ + <em>α</em> <em>t</em>
<em>ω</em> = (4 rad/s²) (3 s)
<em>ω</em> = 12 rad/s
Answer:
Nuclear explosions produce air-blast effects similar to those produced by conventional explosives. The shock wave can directly injure humans by rupturing eardrums or lungs or by hurling people at high speed, but most casualties occur because of collapsing structures and flying debris.
Answer:D) in a straight line.
Hey
Newton's first law says that if an object is at rest it will stay at rest. But if it is moving it will continue moving in a straight line if there is no external force. If there where no gravity the object that you throw will keep going in a straight line according to Newton's first law.