The heat absorbed is calculated using the following equation:
Q = mCΔT
Q = heat absorbed
m = mass = 66 g
C = specific heat of iron = 0.449 J/g.°C
ΔT = temperature change = 20 - 7 =13°C
Therefore,
Q = 66*0.449*13 = 385.242 J
Answer:
5.6
Explanation:
F=kx is the formula for spring force. If Extension versus Force was graphed, a linear relation would appear, where the slope is the k value, aka the spring constant.
Answer:
The answer is below
Explanation:
Charlee's law states that the volume of a gas is directly proportion to the temperature of the gas at constant pressure. That is:
V = kT, where V = volume and T = temperature, k = constant. Therefore:
V / T = k

Given that: 
The new volume is 3.41 m³. That is it expands by 0.41 m³
Answer:
Solution
Explanation:
Solution:-
- The direction of motion of bus and car can be denoted by velocity vectors ( v1 and v2 ) respectively.
- On a page draw the velocity vector v1 vertically up denoting the direction of motion of bus from origin
- Similarly,draw the velocity vector v1 horizontally left denoting the direction of motion of car from origin.
- The force exerted by the car-bus interaction is always in the direction of motion.
- The force exerted by the bus is parallel to velocity vector as F1 and force exerted by the car is parallel to velocity vector as F2.
- The vector addition of of the two forces ( F1 and F2 ) will tell us the direction and magnitude of resultant force due to car-bus interaction.
- The resultant force will cause the car to be pushed off the road in the direction shown in the diagram.
Answer:
272.89g
Explanation:
Find the diagram to the question in the attachment below;.
Using the principle of moment to solve the question which states that the sum of clockwise moment is equal to the sum of anticlockwise moment.
Moment = Force * Perpendicular distance
Taking the moment of force about the pivot.
Anticlockwise moment:
The 85g mass will move in the anticlockwise
Moment of 85g mass = 85×36.6
= 3111gcm
Clockwise moment.
The mass of the metre stick M situated at the centre (50cm from each end) will move in the clockwise direction towards the pivot.
CW moment = 11.4×M = 11.4M
Equating CW moment to the ACW moment we will have;
11.4M = 3111
M = 3111/11.4
M = 272.89g
The mass of the metre stick is 272.89g