Answer:
185.2 g/mol.
Explanation:
Solvent = Benzene
Solute = lauryl alcohol
Given:
Mass of solute = 5 g
Mass of solvent = 0.1 kg
Freezing point of solvent, Temp.f = 4.1 °C
Initial freezing point of solvent, Temp.i = 5.5 °C
Molal freezing depression constant for Benzene, kf = 5.12 °C/m
ΔTemp.f = Temp.f - Temp.i
= 5.5 - 4.1
= 1.4 °C
ΔTemp.f = kf * m
Where m = molality
m = 1.4/5.12
= 0.27 mol/kg
Molality = number of moles of solute/mass of solvent
Number of moles = 0.27/0.1
= 0.027 mol.
Molar mass = mass/number of moles
= 5/0.027
= 185.2 g/mol.
Answer:
0.25 mol
Explanation:
Use the formula n=N/NA
n= number of mols
N = number of particles
Nᵃ = Avogadros constant = 6.02 x 
So, n= 
The 10 to the power of 23 cancels out and you are left with 1.505/6.02, which is approximately 1/4. This is the same as 0.25 mol.
Hope this helped :)
Answer:
There is a relationship between latitude and temperature around the world, as temperatures are typically warmer approaching the Equator and cooler approaching the Poles. There are variations, though, as other factors such as elevation, ocean currents, and precipitation affect climate patterns.
Explanation:
Answer:
The element with electronic configuartion 1s² and atomic number 3 must be an cation.
Explanation:
The "Z" shows the atomic number. Z stand for zahl. It Is German word and meaning is " number".
In given question Z is equal to three which means an element with atomic number three.
Let consider the X is an element with atomic number three having electronic configuration 1s², but according to this atomic number there should be one more electron present is 2s. If X has the electronic configuration 1s² it means that it lose one electron and X is present in the form of cation.
X⁺ = 1s²