1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rosijanka [135]
3 years ago
8

A plane comes in for a landing at a velocity of 80 meters per second west. As it touches down, it decelerates at a constant rate

of 3 meters per second per second. What is the minimum length of runway needed for this plane to come to a complete stop (on the runway!)?
OA) 240 m
OB) 682 m
OC) 859 m
OD) 1067 m​
Physics
1 answer:
azamat3 years ago
7 0

Answer:

Answer D : about 1067 meters

Explanation:

There are two steps to this problem:

1) First find the time it takes the plane to stop using the equation for the acceleration:

a=\frac{Vf-Vi}{t}

Where Vf is the final velocity of the plane (in our case: zero )

Vi is the initial velocity of the plane (in our case: 80 m/s)

a is the acceleration (in our case -3 m/s^2 - notice negative value because the velocity is decreasing)

a=\frac{Vf-Vi}{t}\\-3=\frac{0-80}{t}\\t=\frac{-80}{-3} = \frac{80}{3}

with units corresponding to seconds given the quantities involved in the calculation.

2) Second knowing the time it took the plane to stop, now use that time in the equation for the distance traveled under accelerated motion:

Xf-Xi=Vi*t+\frac{1}{2} a t^{2} \\Xf-Xi= 80 (\frac{80}{3}) +\frac{1}{2} (-3) (\frac{80}{3}) ^{2}=1066.666666...

Where the answer results in units of meters given the quantities used in the calculation.

We round this to 1067 meters

You might be interested in
Starting from rest, a solid sphere rolls without slipping down an incline plane. At the bottom of the incline, what does the ang
Marrrta [24]

Answer:

2/R*sqrt (g*s*sin(θ)) = w

Explanation:

Assume:

- The cylinder with mass m

- The radius of cylinder R

- Distance traveled down the slope is s

- The angular speed at bottom of slope w

- The slope of the plane θ

- Frictionless surface.

Solution:

- Using energy principle at top and bottom of the slope. The exchange of gravitational potential energy at height h, and kinetic energy at the bottom of slope.

                                         ΔPE = ΔKE

- The change in gravitational potential energy is given as m*g*h.

- The kinetic energy of the cylinder at the bottom is given as rotational motion: 0.5*I*w^2

- Where I is the moment of inertia of the cylinder I = 0.5*m*R^2

We have:

                              m*g*s*sin(θ) = 0.25*m*R^2*w^2

                              2/R*sqrt (g*s*sin(θ)) = w

- The angular velocity depends on plane geometry θ , distance travelled down slope s, Radius of the cylinder R , and gravitational acceleration g

3 0
3 years ago
Following a collision between a large spacecraft and an asteroid, a copper disk of radius 28.0 m and thickness 1.20 m, at a temp
coldgirl [10]

Answer:

A. 9.31 x10^10J

B. -8.47x10 ^ 12J

C. 8.38x 10^12J

Explanation:

See attached file pls

3 0
3 years ago
which instrument is best suited for measuring the dimensions of a shoebox? a)a triple-beam balance b)a volumetric flask c)a rule
Aloiza [94]
I believe the correct answer from the choices listed above is option C. The instrument that is <span>best suited for measuring the dimensions of a shoebox would be a ruler. A triple-beam balance is for measuring mass. A volumetric flask is for volume. A caliper is measuring lengths of small objects.</span>
3 0
3 years ago
Read 2 more answers
A runner starts from rest and in 3 s reaches a speed of 8 m/s. If we assume that the speed changed at a constant rate (constant
Stells [14]

Answer:

The average speed of the runner is 4 m/s.

Explanation:

Hi there!

The average speed (a.s) is calculated by dividing the traveled distance (d) over the time needed to travel that distance (t):

a.s = d / t

So, let´s find the distance traveled in those 3 s. For that, we can use the equation of position of an object moving in a straight line with constant acceleration:

x = x0 + v0 · t + 1/2 · a · t²

Where:

x = position of the object at time t.

x0 = initial position.

v0 = initial velocity.

t = time.

a = acceleration.

If we place the origin of the frame of reference at the point where the runner starts, then, x0 = 0. Since the runner starts from rest, v0 = 0. So, the equation gets reduced to this:

x = 1/2 · a · t²

We have the time (3 s), so let´s find the acceleration. For that, we can use the equation of velocity of an object moving in a straight line with constant acceleration:

v = v0 + a · t

Where "v" is the velocity at a time "t". Since v0 = 0, then:

v = a · t

At t = 3 s, v = 8 m/s

8 m/s = a · 3 s

8/3 m/s² = a

So let´s find the position of the runner at t = 3 s (In this case, the position of the runner will be equal to the traveled distance):

x = 1/2 · a · t²

x = 1/2 · 8/3 m/s² · (3 s)²

x = 12 m

Now, we can calcualte the average speed:

a.s = d/t

a.s = 12 m / 3 s

a.s = 4 m/s

The average speed of the runner is 4 m/s.

4 0
3 years ago
The left hemisphere of the brain controls the right side of the body. Please select the best answer from the choices provided T
olga nikolaevna [1]

Answer:

True

Explanation:

The different sides control the opposite side of the human body

4 0
2 years ago
Other questions:
  • What intermolecular force is responsible for the attraction between an ion and a polar molecule?
    13·1 answer
  • Use the figure below to answe
    8·1 answer
  • To properly record a measurements, you must record which of the following?
    9·1 answer
  • Explain how changes in weather are caused by the interaction of air masses
    6·1 answer
  • PLEASE HELP!!! URGENT MATTERS!!!!
    13·1 answer
  • Why do you think it is so important that all evidence be identified (such as marking the bullets and tagging firearms)? What con
    15·1 answer
  • Convert 2536 mm/min to m/s. Use dimensional analysis.
    14·1 answer
  • A train, traveling at a constant speed of 25.8 m/s, comes to an incline with a constant slope. While going up the incline, the t
    7·1 answer
  • Maria and Ben are both suffering from a hereditary disease, as described in the following table.
    11·2 answers
  • Why is photoelectric effect important?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!