Pressure given by:
Pressure=(force)/(area)
Force=Mass*gravitational pull
Mass=34Kg
gravity=9.80
so,
force=34*9.8=333.2
thus;
pressure=333.2/25=13.328=13.3 N/cm^2
Hope this helped :)
Answer:
It is composed of 57.17% S and 42.83% C and has a molar mass of 448.70 g/mol. Determine the empirical and molecular formulas of “sulflower.”
...
what is the molecular formula of the compound?
Empirical formula Molar mass (g/mol) Molecular formula
CHO 116.1
C8H16
Explanation:
Hope this helps
Answer: The amount of energy needed to move an electron from one zone to another is a fixed, finite amount. The electron with its extra packet of energy becomes excited, and promptly moves out of its lower energy level and takes up a position in a higher energy level.
Explanation:
∆H ° rxn =-2855.56 kJ
<h3>Further explanation</h3>
Given
ΔHf CO₂ = -393.5 kJ/mol
ΔHf H₂O = -241.82 kJ/mol
ΔHf C₂H₆ = - 84.68 kJ/mol
Reaction
2C2H6(g) + 7O2(g) -> 4CO2(g) + 6H2O(g)
Required
ΔHrxn=
Solution
<em>∆H ° rxn = ∑n ∆Hf ° (product) - ∑n ∆Hf ° (reactants) </em>
∆H ° rxn = (4.-393.5+6.-241.82)-(2.-84.68)
∆H ° rxn = (-1574-1450.92)-(-169.36)
∆H ° rxn =-3024.92+169.36
∆H ° rxn =-2855.56 kJ
If you do not inflate the life raft to make completely filled out, as long as you do not press or squeeze the life raft, the air inside it will be in equilibrium with the air outside the raft, and so the pressure inside the life raft will be the same atmospheric pressure, 14.7 psi.
Note that when the raft is swollen, if you punch it, the air will leave from it which means that the pressure inside is greater than the atmospheric pressure.