Answer:
81 °C
Explanation:
This is a calorimetry question so a few things you will need for this. The calorimetry equation q=mcΔT & the specific heat of water (4.2J/g•°C). Other definitions are:
q = heat added/released by a sample
m = mass of sample
c=specific heat of sample
ΔT = change in temperature
from here we can rearrange the equation to state:
q/(mc) = ΔT
1200J/((20.0g)(4.2J/g•°C)) = ΔT
14°C = ΔT
If the starting temperature was 95.0°C and we know that the temperature was cooled by 14°C then the final temperature of the water would be 81.
All the information is answered/given in the paragraph except that the study doesn’t show cells in their natural habitat!
Answer:
(NH₄)₃PO₄ (l) + Al(NO₃)₃(l) -----------→ AlPO₄(l) + 3NH₄NO₃(l)
Explanation:
Data Give:
Reaction between ammonium phosphate solution and solution of aluminum nitrate
- Write a balanced chemical equation
Details:
To write a balanced chemical equation we have to know formula units of compounds or molecules
Formula units
ammonium phosphate : (NH₄)₃PO₄
aluminum nitrate: Al(NO₃)₃
ammonium nitrate: NH₄NO₃
Now to write a chemical equation
- we have to write the chemical formulas or formula unit of each compound
- write the reactant on left side of the arrow
- write the product on the right side of the arrow
- put a plus sign in 2 reactants and products on each side of the arrow
- balance the equation by putting coefficient with compound formula
- write the phase symbols on the right corner of the compound formula in brackets
So the Reaction will be
(NH₄)₃PO₄ + Al(NO₃)₃ -----------→ AlPO₄ + NH₄NO₃
Now balance the Chemical equation
(NH₄)₃PO₄ + Al(NO₃)₃ -----------→ AlPO₄ + 3NH₄NO₃
Now write the phase Symbols
(NH₄)₃PO₄ (l) + Al(NO₃)₃(l) -----------→ AlPO₄(l) + 3NH₄NO₃(l)
all compounds in the reaction are in liquid form and soluble in water
*** Note:
There is no aluminum nitrite in chemicals formulas
Also ammonium nitrite can not be used in pure isolated form due to its highly instability
Answer:
You need follower?
See it shows this in Laptop
I can't see who I am following it does itself
The new volume of a 250 Ml sample of gas at 300k and 1atm if heated to 350 k at 1 atm is 291.67 Ml
<u>calculation</u>
This is solved using the Charles law formula since the pressure is constant.
that is V1/T1 = V2/T2 where,
V1 =250 ml
T1=300 K
V2=?
T2= 350 k
by making V2 the subject of the formula by multiplying both side by T2
V2= T2V1/T1
V2= (350 K x 250 ml) / 300K =291.67 Ml