Answer:
Systems always tend toward a state of decreasing order unless more energy is provided into the system to counteract this tendency.
Answer:
Anybody which is in state of rest ,will be in rest if we don't apply any external force ...
The alpha line in the Balmer series is the transition from n=3 to n=2 and with the wavelength of λ=656 nm = 6.56*10^-7 m. To get the frequency we need the formula: v=λ*f where v is the speed of light, λ is the wavelength and f is the frequency, or c=λ*f. c=3*10^8 m/s. To get the frequency: f=c/λ. Now we input the numbers: f=(3*10^8)/(6.56*10^-7)=4.57*10^14 Hz. So the frequency of the light from alpha line is f= 4.57*10^14 Hz.
Answer:
0.278 m/s
Explanation:
We can answer the problem by using the law of conservation of momentum. In fact, the total momentum before the collision must be equal to the total momentum after the collision.
So we can write:
where
m = 0.200 kg is the mass of the koala bear
u = 0.750 m/s is the initial velocity of the koala bear
M = 0.350 kg is the mass of the other clay model
v is their final combined velocity
Solving the equation for v, we get
W = 4.9N. The weight of a basketball with a mass of 0.5Kg is 4.9N.
The weight of an object is the force of gravity on the object and can be defined as the product of the mass by the acceleration of gravity, w = mg.
W = (0.5Kg)(9.8 m/s²) = 4.9N