Answer:
The final temperature of both objects is 400 K
Explanation:
The quantity of heat transferred per unit mass is given by;
Q = cΔT
where;
c is the specific heat capacity
ΔT is the change in temperature
The heat transferred by the object A per unit mass is given by;
Q(A) = caΔT
where;
ca is the specific heat capacity of object A
The heat transferred by the object B per unit mass is given by;
Q(B) = cbΔT
where;
cb is the specific heat capacity of object B
The heat lost by object B is equal to heat gained by object A
Q(A) = -Q(B)
But heat capacity of object B is twice that of object A
The final temperature of the two objects is given by

But heat capacity of object B is twice that of object A

Therefore, the final temperature of both objects is 400 K.
Answer:
100
Explanation:
take note that v=d/t (velocity is distance over(divided by) time, so in this case it would be 200 (distance) divided by 2 (time) = 100
Explanation:
At the instant of release there is no force but an acceleration of a, this means the ball is falling freely under the force of gravity. Then the acceleration would be due to force of gravity and acceleration a = g =9.81 m/s^2.
g= acceleration due to gravity
<h2>
Entire trip takes 1.22 seconds.</h2>
Explanation:
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Time, t = 0.866 s
Substituting
s = ut + 0.5 at²
s = 0 x 0.866 + 0.5 x 9.81 x 0.866²
s = 3.68 m
Halfway is 3.68 m
Total height = 2 x 3.68 = 7.36 m
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Time, t = ?
Displacement, s = 7.36 m
Substituting
s = ut + 0.5 at²
7.36 = 0 x t + 0.5 x 9.81 x t²
t = 1.22 s
Entire trip takes 1.22 seconds.
Fire Service Day
International Firefighters' Day (IFFD) is observed on May 4. It was instituted after a proposal was emailed out across the world on January 4, 1999 due to the deaths of five firefighters in tragic circumstances in a bushfire in Australia.