1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brut [27]
3 years ago
14

What force gives a 1.0 kg mass an acceleration of 7.0 m/s^2?​

Physics
2 answers:
TiliK225 [7]3 years ago
7 0

For this case we have that according to Newton's second law it is true that:

F = m * a

Where:

F: It is the force

m: It is the mass

a: It is the acceleration

According to the data we have:

m = 1.0 \ kg\\a = 7.0 \frac {m} {s ^ 2}

So, we have:

F = 1.0 \ kg * 7.0 \frac {m} {s ^ 2}\\F = 7 \ N

Thus, the applied force will be 7 Newtons.

Answer:

F = 7 \ N

weqwewe [10]3 years ago
4 0

Answer:

7N

Explanation:

From Newton's law of motion, F=ma where m is mass, a is acceleration. Since we're given mass as 1 kg and acceleration as 7 m/s2 then we substitute them directly into the above formula to get force, F.

By substitution of the above figures, F=1*7=7N

Therefore, the magnitude of force is 7N

You might be interested in
In an open system such as a campfire matter can
eimsori [14]
In an open system such as a campfire, matter can lose particles, gain particles or exchange particles.
4 0
3 years ago
which planet should punch travel to if his goal is to weigh in at 118 lb? refer to the table of planetary masses and radii given
Harrizon [31]

The planet that Punch should travel to in order to weigh 118 lb is Pentune.

<h3 /><h3 /><h3>The given parameters:</h3>
  • Weight of Punch on Earth = 236 lb
  • Desired weight = 118 lb

The mass of Punch will be constant in every planet;

W = mg\\\\m = \frac{W}{g}\\\\m = \frac{236}{g}

The acceleration due to gravity of each planet with respect to Earth is calculated by using the following relationship;

F = mg = \frac{GmM}{R^2} \\\\g = \frac{GM}{R^2}

where;

  • M is the mass of Earth = 5.972 x 10²⁴ kg
  • R is the Radius of Earth = 6,371 km

For Planet Tehar;

g_T =\frac{G \times 2.1M}{(0.8R)^2} \\\\g_T = 3.28(\frac{GM}{R^2} )\\\\g_T = 3.28 g

For planet Loput:

g_L =\frac{G \times 5.6M}{(1.7R)^2} \\\\g_L = 1.94(\frac{GM}{R^2} )\\\\g_L = 1.94g

For planet Cremury:

g_C =\frac{G \times 0.36M}{(0.3R)^2} \\\\g_C = 4(\frac{GM}{R^2} )\\\\g_C = 4 g

For Planet Suven:

g_s =\frac{G \times 12M}{(2.8R)^2} \\\\g_s = 1.53(\frac{GM}{R^2} )\\\\g_s = 1.53 g

For Planet Pentune;

g_P =\frac{G \times 8.3 }{(4.1R)^2} \\\\g_P = 0.5(\frac{GM}{R^2} )\\\\g_P = 0.5 g

For Planet Rams;

g_R =\frac{G \times 9.3M}{(4R)^2} \\\\g_R = 0.58(\frac{GM}{R^2} )\\\\g_R = 0.58 g

The weight Punch on Each Planet at a constant mass is calculated as follows;

W = mg\\\\W_T = mg_T\\\\W_T = \frac{236}{g} \times 3.28g = 774.08 \ lb\\\\W_L = \frac{236}{g} \times 1.94g =457.84 \ lb\\\\ W_C = \frac{236}{g}\times 4g = 944 \ lb \\\\ W_S = \frac{236}{g} \times 1.53g = 361.08 \ lb\\\\W_P = \frac{236}{g} \times 0.5 g = 118 \ lb\\\\W_R = \frac{236}{g} \times 0.58 g = 136.88 \ lb

Thus, the planet that Punch should travel to in order to weigh 118 lb is Pentune.

<u>The </u><u>complete question</u><u> is below</u>:

Which planet should Punch travel to if his goal is to weigh in at 118 lb? Refer to the table of planetary masses and radii given to determine your answer.

Punch Taut is a down-on-his-luck heavyweight boxer. One day, he steps on the bathroom scale and "weighs in" at 236 lb. Unhappy with his recent bouts, Punch decides to go to a different planet where he would weigh in at 118 lb so that he can compete with the bantamweights who are not allowed to exceed 118 lb. His plan is to travel to Xobing, a newly discovered star with a planetary system. Here is a table listing the planets in that system (<em>find the image attached</em>).

<em>In the table, the mass and the radius of each planet are given in terms of the corresponding properties of the earth. For instance, Tehar has a mass equal to 2.1 earth masses and a radius equal to 0.80 earth radii.</em>

Learn more about effect of gravity on weight here: brainly.com/question/3908593

5 0
2 years ago
[O.04H]The table below shows the use of some energy production methods over time.
mr Goodwill [35]

I think The coastal areas were highly polluted

8 0
3 years ago
Read 2 more answers
At the same moment from the top of a building 3.0 × 10 2 m tall, one rock is dropped and one is thrown downward with an initial
Bess [88]
The equation that relates distance, velocities, acceleration, and time is,
                   d = V₀t + 0.5gt²
where d is distance,
V₀ is the initial velocity,
t is time, and 
g is the acceleration due to gravity (equal to 9.8 m/s²)

(1) Dropped rock,
                  (3 x 10² m ) = 0(t) + 0.5(9.8 m/s²)(t²)
The value of t from this equation is 24.73 s

(2) Thrown rock with V₀ = 26 m/s
                (3 x 10² m) = (26)(t) + 0.5(9.8 m/s²)(t²)
The value of t from the equation is 5.61 s

The difference between the tim,
        difference = 24.73 s - 5.61 s
          difference = 19.12 s

<em>ANSWER: 19.12 s</em>
5 0
3 years ago
Read 2 more answers
Which of the following would be considered an endothermic process?
In-s [12.5K]
I feel like it is d . :) it could be a too so idrk
7 0
3 years ago
Other questions:
  • Describe the gases that are emitting from a volcanic eruption. What affect do they have on the atmosphere and planet?
    5·1 answer
  • A 1.2-kg ball drops vertically onto the floor, hitting with a speed of 25 m/s. Consider the impulse during this collision. Would
    9·1 answer
  • When comparing the three atomic models provided, which statement best describes the diagram?
    8·1 answer
  • An infinite sheet of charge is located in the y-z plane at x = 0 and has uniform charge denisity σ1 = 0.35 μC/m2. Another infini
    5·1 answer
  • Current is the movement of negative charges called protons.<br> A. True<br> B. False
    8·1 answer
  • A box has sides of 10 cm, 8.2 cm, and 3.5 cm. What is its volume?
    6·1 answer
  • Heated lithium atoms emit photons of light with an energy of 2.961 × 10−19 J. Calculate the frequency and wavelength of one of t
    11·1 answer
  • Which instrument changes kinetic energy into electrical energy?
    12·1 answer
  • Determine the kinetic energy of a 2000 kg roller coaster car that is moving at the speed of 10 ms
    14·1 answer
  • Having so much trouble with this : which fact represents evidence for the big bang theory
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!