An atom's mass number equals the number of protons plus the number of neutrons.
Hope this helps! (:
I believe the correct answer from the choices listed above is the third option. <span>The force exerted by the book on the table is equal to the force exerted by the table which is 4.0 N. The book does not move so it must be that the forces are balanced. Hope this answers the question.</span>
Answer:
Yes
Explanation:
There are two types of interference possible when two waves meet at the same point:
- Constructive interference: this occurs when the two waves meet in phase, i.e. the crest (or the compression, in case of a longitudinale wave) meets with the crest (compression) of the other wave. In such a case, the amplitude of the resultant wave is twice that of the original wave.
- Destructive interferece: this occurs when the two waves meet in anti-phase, i.e. the crest (or the compression, in case of a longitudinal wave) meets with the trough (rarefaction) of the other wave. In this case, the amplitude of the resultant wave is zero, since the amplitudes of the two waves cancel out.
In this problem, we have a situation where the compression of one wave meets with the compression of the second wave, so we have constructive interference.
<em>The answer is </em>Ninth <em>and </em>Tenth <em>grade so the answer would be</em> B
<em>I hope this helps you </em>