Answer:
= 85.7 ° C
Explanation:
For this exercise we will use the calorimetry heat ratios, let's start with the heat lost by the evaporation of coffee, since it changes from liquid to vapor state
Q₁ = m L
Where m is the evaporated mass (m = 2.00 103-3kg) and L is 2.26 106 J / kg, where we use the latent heat of the water
Q₁ = 2.00 10⁻³ 2.26 10⁶
Q1 = 4.52 10³ J
Now the heat of coffee in the cup, which does not change state is
Q coffee = M
(
-
)
Since the only form of energy transfer is terminated, the heat transferred is equal to the evaporated heat
Qc = - Q₁
M ce (
-
) = - Q₁
The coffee dough left in the cup after evaporation is
M = 250 -2 = 248 g = 0.248 kg
-Ti = -Q1 / M
= Ti - Q1 / M 
Since coffee is essentially water, let's use the specific heat of water,
= 4186 J / kg ºC
Let's calculate
= 90.0 - 4.52 103 / (0.248 4.186 103)
= 90- 4.35
= 85.65 ° C
= 85.7 ° C
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
The force of friction is equal to the product of the vertical force applied by the surface to the object in the coefficient of friction.
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
In this question ,
surface vertical force = Weight of the object
Thus ;
svf = ( mass ) × ( gravity acceleration )
_________________________________
If gravity acceleration is 10 :
svf = 10 × 10 = 100 N
So ;
frictional force = 100 × 0.20
frictional force = 20 N
##############################
If gravity acceleration is 9.8 :
svf = 10 × 9.8 = 98 N
So ;
frictional force = 98 × 0.20
frictional force = 19.6 N
_________________________________
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
Hello =D
This problem is about cinematic
So
V = 45 mi/h
t = 2 h
Then
V= X/t
X = V*t
Then
X = (45)*(2)
X = 90 mi
Best regards