List out all the variables that you do know;
acceleration=-9.8 ms⁻¹ (this remains constant on Earth)
Final velocity=?
Displacement (s)= -2.1 m
Initial Velocity(u)=2.5 ms⁻¹
v²=u²+2as
v²=(2.5)²+2(-9.8)(-2.1)
v²=47.41
v=√47.41
v=6.88549 ≈ 6.9 ms⁻¹
Hope I helped :)
<span>A.
The model of the atom evolved as scientists have made new discoveries.</span>
Answer:
Explanation:
Given that,
Surface area A= 17m²
The speed at the top v" = 66m/s
Speed beneath is v' =40 m/s
The density of air p =1.29kg/m³
Weight of plane?
Assuming that,
the height difference between the top and bottom of the wind is negligible and we can ignore any change in gravitational potential energy of the fluid.
Using Bernoulli equation
P'+ ½pv'²+ pgh' = P'' + ½pv''² + pgh''
Where
P' is pressure at the bottom in N/m²
P" is pressure at the top in N/m²
v' is velocity at the bottom in m/s
v" is velocity at the top in m/s
Then, Bernoulli equation becomes
P'+ ½pv'² = P'' + ½pv''²
Rearranging
P' — P'' = ½pv"² —½pv'²
P'—P" = ½p ( v"² —v'²)
P'—P" = ½ × 1.29 × (66²-40²)
P'—P" = 1777.62 N/m²
Lift force can be found from
Pressure = force/Area
Force = ∆P ×A
Force = (P' —P")×A
Since we already have (P'—P")
Then, F=W = (P' —P")×A
W = 1777.62 × 17
W = 30,219.54 N
The weight of the plane is 30.22 KN
<span>The correct answer is B. Inverted image. This is because of all the lenses and light refractions and what not. The same things happens with our eyes except our brains fix the inverted image automatically. Since there are no brains in a projector, you have to fix it on your own by putting it in reverse.</span>
Equal to 50
law of reflection: angle of incidence equals angle of reflection