Answer:
1.0 × 10⁻⁹ M.
Explanation:
<em>∵ [H₃O⁺][OH⁻] = 10⁻¹⁴.</em>
[H₃O⁺] = 1.0 x 10⁻⁵ M.
<em>∴ [OH⁻] = 10⁻¹⁴/[H₃O⁺]</em> = 10⁻¹⁴/(1.0 x 10⁻⁵ M) = <em>1.0 × 10⁻⁹ M.</em>
Answer:
A. An Atom
Explanation:
An atom is the smallest particle of an element, having the same chemical properties as the bulk element.
Answer:
Mole Fraction (H₂O) = 0.6303
Mole Fraction (C₂H₅OH) = 0.3697
Explanation:
(Step 1)
Calculate the mole value of each substance using their molar masses.
Molar Mass (H₂O): 2(1.008 g/mol) + 15.998 g/mol
Molar Mass (H₂O): 18.014 g/mol
200.0 g H₂O 1 mole
--------------------- x ------------------ = 11.10 moles H₂O
18.014 g
Molar Mass (C₂H₅OH): 2(12.011 g/mol) + 6(1.008 g/mol) + 15.998 g/mol
Molar Mass (C₂H₅OH): 46.068 g/mol
300.0 g C₂H₅OH 1 mole
---------------------------- x -------------------- = 6.512 moles C₂H₅OH
46.068 g
(Step 2)
Using the mole fraction ratio, calculate the mole fraction of each substance.
moles solute
Mole Fraction = ------------------------------------------------
moles solute + moles solvent
11.10 moles H₂O
Mole Fraction = -------------------------------------------------------------
11.10 moles H₂O + 6.512 moles C₂H₅OH
Mole Fraction (H₂O) = 0.6303
6.512 moles C₂H₅OH
Mole Fraction = -------------------------------------------------------------
11.10 moles H₂O + 6.512 moles C₂H₅OH
Mole Fraction (C₂H₅OH) = 0.3697
The costs, risks, and benefits to building a nuclear waste storage facility somewhere else
Answer:
W = -10.3 kJ
Explanation:
During combustion, the system performs work and releases heat. Therefore, the change in internal energy is negative, and the change in enthalpy, which is equal to heat at constant pressure, is also negative. Work is then calculated by rearranging the equation for the change in internal energy:
w=ΔE−qp=−5084.3 kJ−(−5074.0 kJ)
The release of heat is much greater than the work performed by the system on its surroundings. The potential energy stored in the bonds of octane explains why considerably large amounts of energy can be lost by the system during combustion.