Answer:
they are equal
Explanation:
the Law of Conservation of Mass states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass cannot change
Molar volume is a property of a component in a solution. It is defined as the volume occupied by one mole of the component in the closed system. You would not expect all solutions to execute volume additivity because intermolecular forces between the components come into play. There is no such thing as conservation of volume.
Vapor pressure affects molar volume because gases are very sensitive by these process conditions. Vapor pressure is very temperature-dependent. Consequently, at a different temperature, your component could expand or compress, thus, affecting the molar volume. Moreover, the pressure affects the molecular collisions in the system.
Answer:
The heat absorbed by the sample of water is 3,294.9 J
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
The sensible heat of a body is the amount of heat received or transferred by a body when it undergoes a temperature variation (Δt) without there being a change of physical state (solid, liquid or gaseous). Its mathematical expression is:
Q = c * m * ΔT
Where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
In this case:
- Q=?
- m= 45 g
- c= 4.184

- ΔT= Tfinal - Tinitial= 38.5 C - 21 C= 17.5 C
Replacing:
Q= 4.184
* 45 g* 17.5 C
Solving:
Q=3,294.9 J
<u><em>The heat absorbed by the sample of water is 3,294.9 J</em></u>
<u><em></em></u>
I have done this question before and even though you didn’t provide the options. I think the correct option is elements