Volume of Cl₂(g) is produced at 1.0 atm and 540.°C=4.5×10^4 L
As per the evenly distributed response
2NaCl (g) ----> 2Na(l)+ Cl2(g)
Calculate the amount of Cl2 that was formed as indicated below:
Moles of Cl2 = 31.0 kg of Na x (1000* 1 * 1 / 1*23* 2)
= 673.9 mol
P is equal to 1.0 atm, and T is equal to 813.15 K
when converted to Kelvin by multiplying by a factor of 273.15.
Using Cl2 as an ideal gas, determine the in the following volume:
volume = nRT/P
= 673.9 * 0.0821 * 813.15/ 1
=4.5×10^4 L
As a result, the volume of Cl2 under the given circumstances =4.5×10^4 L
Learn more about Volume here:
brainly.com/question/13338592
#SPJ4
The Coriolis Effect describes the turn of the wind to the right in the Northern Hemisphere caused by earth's rotation.
The electron geometry of a water molecule is tetrahedral even though the molecular geometry is bent.
As water molecule hybridisation is sp³ that provides it a electron geometry tetrahedral but due to presence of 2 lone pairs and 2 bond pairs its molecular geometry is bent.
The hybridisation sp³ makes electron geometry of a water molecule tetrahedral but the presence of 2 lone pairs makes its molecular geometry bent
Answer:
<h2>1.264 × 10²⁴ molecules</h2>
Explanation:
The number of molecules can be found by using the formula
N = n × L
where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have
N = 2.10 × 6.02 × 10²³
We have the final answer as
<h3>1.264 × 10²⁴ molecules</h3>
Hope this helps you
The included angle, i.e. If two pairs of sides of two triangles are in proportion, and the included angles are equal, then the triangles are similar.