<span>The solute is the substance that is being dissolved while the solvent is the base that the solute is bring dissolved in. For example, in salt water, salt would be the solute that dissolves into the water, and the water is the solvent that the salt is being dissolved in.</span>
Answer:
The correct answer is 2.75 grams of HCl.
Explanation:
The given balanced equation is:
CaCO₃ (s) + 2HCl (aq) ⇒ CaCl₂ (aq) + H₂O (l) + CO₂ (g)
Based on the given information, one mole of calcium carbonate is reacting with two moles of HCl. The molecular mass of HCl is 36.5 grams, thus, the mass of 2 moles of HCl will be, 36.5 × 2 = 73 grams
The molecular mass of CaCO₃ is 100 gram per mole, that is, the mass of 1 mole of CaCO₃ is 100 grams, therefore, the mass of HCl required for reacting with 3.75 grams of CaCO₃ will be,
= 3.75 × 2 × 36.5 / 100 = 2.74 grams of HCl.
Answer:
See explanation.
Explanation:
Hello,
In this case, for the described chemical reaction:
2 HCl(aq) + Mg(OH)2(aq) → MgCl2(aq) + 2 H2O(l)
We can notice there is a 2:1 molar ratio between the moles of hydrochloric acid and magnesium hydroxide, therefore, at the equivalence point:

And in terms of volumes and concentrations we verify:

So we use the given data to proof it:

Therefore, we can conclude the data is wrong by means of the 2:1 mole ratio that for sure was not taken into account. This is also supported by the fact that normalities are actually the same, but the nomality of magnesium hydroxide is the half of the hydrochloric acid normality since the acid is monoprotic and the base has two hydroxyl ions.
Best regards.
Answer:
In compound 1 the Tert butyl group occupies the equatorial position and the Bromine occupies the axial position and in compound 2 the Tert butyl occupies the axial and the bromine occupies equatorial positions. Compound 1 reacts faster than compound 2.
Explanation:
In cyclic organic compounds, substituents may occupy the axial or equatorial positions. The axial positions are aligned parallel to the symmetry axis of the ring while the equatorial positions are around the plane of the ring.
Bulky substituents have more room in the equatorial than in the axial position. This means that compound 1 is more stable than compound 2.
This is clear on the basis of stability of the molecules because compound 1 will react faster than compound 2 since the bulky tertiary butyl group in compound 1 occupy equatorial and not axial positions.
First one is False. The second is true.