Answer:
V₁ = 6 V
, V₂ = V₃ = 3 V
Explanation:
To solve this circuit we must remember that there are two fundamental types of construction in series and parallel.
* a serial circuit there is only one path for current
in this circuit the constant current in the entire circuit and the voltage is the sum of the voltage of each term
* Parallel circuit in this there are two or more paths for the current
in this circuit the voltage is constant and the east is divided between each branch
with these principles let's analyze the proposed circuit
The DC battery is in parallel with resistor R1 and the equivalent of the other branch,
as in a parallel circuit the voltage is constant
V₁ = 6 V
in the other branch (23) it forms a series construction, where the current is constant
6 = iR₂ + iR₃
as they indicate that each resistance has the same value
6 = 2 iR
V = V₂ = V₃ = 3 V
Answer: Gamma rays
Explanation: The given waves belong to the electromagnetic spectrum which consists of different electromagnetic radiations arranged in terms of increasing wavelengths or decreasing frequencies.


Thus 
E= energy
= frequency
c = speed of light
= wavelength
Thus frequency and wavelength are inversely related. The waves having high energies ave high frequencies and have shorter wavelengths.
Thus gamma rays having highest energy have highest frequency and shortest wavelength.
Answer:
Horizontal component = 16.8 m/s
Vertical component = 46.0 m/s
Explanation:
If we denote the initial velocity by <em>v</em> and the angle above the horizontal by <em>θ</em>,
the horizontal component of this initial velocity is given by


The vertical component is given by


Answer: A. Scott and Karla
Explanation: Velocity includes speed AND direction.
Answer:
Electric field by charged disk is given as
E = (Charge Density/2u0)*[1 - (z/sqrt(z^2 - R^2))]
R = 9.54cm = 0.0954m, z = 1.01m, Charge density = 4.07 x 10^-6C/m2, e0 = 8.85 x 10^-12F/m.
Substituting all the values in to equation,
E = (2.299 x 10^5) x (8.931 x 10^-3)
E = 2.053 x 10^3N/C
Explanation: