Answer:
D.
Explanation:
Given that your boat departs from the bank of a river that has a swift current parallel to its banks. If you want to cross this river in the shortest amount of time, you should direct your boat: so that it drifts with the current.
If the boat moves perpendicular to the current, the current flow will be the resistance to the movement of the boat. So, it's better for the boat to drifts perpendicularly with the current.
The best answer is therefore option D.
Answer:
448 J/kg/°C
Explanation:
m₁ C₁ (T₁ − T) + m₂ C₂ (T₂ − T) = 0
(0.0414 kg) C (243°C − 20.4°C) + (0.411 kg) (4186 J/kg/°C) (18°C − 20.4°C) = 0
(9.22 kg°C) C − 4129 J = 0
C = 448 J/kg/°C
Answer:
The current in the wire is 31.96 A.
Explanation:
The current in the wire can be calculated as follows:

<u>Where</u>:
q: is the electric charge transferred through the surface
t: is the time
The charge, q, is:

<u>Where</u>:
n: is the number of electrons = 7.93x10²⁰
e: is the electron's charge = 1.6x10⁻¹⁹ C

Hence, the current in the wire is:

Therefore, the current in the wire is 31.96 A.
I hope it helps you!
No it's the opposite, ths higher the pitch the greater the frequency.
Answer:
Explanation:
Given
Mass of mother 
Mother is released with a speed of 
Assuming we need to find elastic Potential energy stored in Trampoline
Kinetic energy acquired by Mother comes from Elastic Potential Energy stored in the spring
I.e. Elastic Potential Energy=Kinetic Energy of mother

So 246.875 J of Energy is stored in the trampoline as he pull the ring