1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RSB [31]
4 years ago
7

Why must the substance be stirred as it heats or cools?

Physics
1 answer:
Evgen [1.6K]4 years ago
7 0
The stirring is done in order to mix the substance and create a uniform temperature distribution, so that there are no cold or hot areas in the substance.
You might be interested in
John bounces a ball off the ground, and it leaves the ground with a velocity of 10 m/s. How long will it take the ball to reach
Maksim231197 [3]

Explanation:

This is true because at maximum height, the velocity is 0

8 0
4 years ago
Read 2 more answers
A Honda Hawk motorcycle and its rider with a combined mass of 450 kg travels around a curve of radius 106 m with a speed of 18 m
umka21 [38]

Answer: coefficient of static friction

= 0.31

Explanation: Since they negotiate the curve without skidding, the frictional force (F1) equals the centripetal force (F2).

F1= uN

F2 = M*(v²/r)

M is the combined mass 450kg

V is the velocity 18m/s

r is the radius 106m

N is the normal reaction 4410N

u is the coefficient of static friction

Making u subject of the formula we have that,

u = {450*(18²/106)} /4410

=1375.47/4410

=0.31

NOTE: coefficient of friction is dimensionless. It as no Unit.

7 0
3 years ago
A 0.240 kg potato is tied to a string with length 1.90 m, and the other end of the string is tied to a rigid support. The potato
Luba_88 [7]

Explanation:

Below is an attachment containing the solution.

7 0
3 years ago
Read 2 more answers
An insect 5.25 mm tall is placed 25.0 cm to the left of a thin planoconvex lens. The left surface of this lens is flat, the righ
Zigmanuir [339]

Answer:

(A) therefore the image is

  • 63 cm to the right of the lens
  • the image size is -13.22 cm
  • it is real
  • it is inverted

(B) therefore the image is

  • 63 cm to the right of the lens
  • the image size is -13.22 cm
  • it is real
  • it is inverted

Explanation:

height of the insect (h) = 5.25 mm = 0.525 cm

distance of the insect (s) = 25 cm

radius of curvature of the flat left surface (R1) = ∞

radius of curvature of the right surface (R2) = -12.5 cm (because it is a planoconvex lens with the radius in the direction of the incident rays)

index of refraction (n) = 1.7

(A) we can find the location of the image by applying the formula below

\frac{1}{f} =\frac{1}{s'} +\frac{1}{s} where

  • s' = distance of the image
  • f = focal length
  • but we first need to find the focal length before we can apply this formula

\frac{1}{f} =(n-1)(\frac{1}{R1} -\frac{1}{R2} )

\frac{1}{f} =(1.7-1)(\frac{1}{∞} -\frac{1}{-12.5} )

\frac{1}{f} =(0.7)(0 + \frac{1}{12.5} )

\frac{1}{f} =\frac{0.7}{12.5}

f = \frac{12.5}{0.7}

f = 17.9 cm

now that we have the focal length we can apply \frac{1}{f} =\frac{1}{s'} +\frac{1}{s}

\frac{1}{f} - \frac{1}{s} =\frac{1}{s'}

\frac{1}{17.9} - \frac{1}{25} =\frac{1}{s'}

\frac{25 - 17.9}{17.9 x 25} =\frac{1}{s'}

\frac{7.1}{447.5} =\frac{1}{s'}

s' = \frac{447.5}{7.1}[/tex]  = 63 cm to the right of the lens

magnification =\frac{-s'}{s} =\frac{y'}{y}   where y' is the height of the image, therefore

\frac{-s'}{s} =\frac{y'}{y}

\frac{-63}{25} =\frac{y'}{52.5}

y' = \frac{-63}{25} x 0.525 = -13.22 cm

therefore the image is

  • 63 cm to the right of the lens
  • the image size is -13.22 cm
  • it is real
  • it is inverted

(B) if the lens is reversed, the radius of curvatures would be interchanged

radius of curvature of the flat left surface (R1) = ∞

radius of curvature of the right surface (R2) = 12.5 cm

we can find the location of the image by applying the formula below

\frac{1}{f} =\frac{1}{s'} +\frac{1}{s} where

  • s' = distance of the image
  • f = focal length
  • but we first need to find the focal length before we can apply this formula

\frac{1}{f} =(n-1)(\frac{1}{R1} -\frac{1}{R2} )

\frac{1}{f} =(1.7-1)(\frac{1}{12.5} -\frac{1}{∞} )

\frac{1}{f} =(0.7)( \frac{1}{12.5} - 0)

\frac{1}{f} =\frac{0.7}{12.5}

f = \frac{12.5}{0.7}

f = 17.9 cm

now that we have the focal length we can apply \frac{1}{f} =\frac{1}{s'} +\frac{1}{s}

\frac{1}{f} - \frac{1}{s} =\frac{1}{s'}

\frac{1}{17.9} - \frac{1}{25} =\frac{1}{s'}

\frac{25 - 17.9}{17.9 x 25} =\frac{1}{s'}

\frac{7.1}{447.5} =\frac{1}{s'}

s' = \frac{447.5}{7.1}[/tex]  = 63 cm to the right of the lens

magnification =\frac{-s'}{s} =\frac{y'}{y}   where y' is the height of the image, therefore

\frac{-s'}{s} =\frac{y'}{y}

\frac{-63}{25} =\frac{y'}{52.5}

y' = \frac{-63}{25} x 0.525 = -13.22 cm

therefore the image is

  • 63 cm to the right of the lens
  • the image size is -13.22 cm
  • it is real
  • it is inverted

7 0
4 years ago
Analogies exist between rotational and translational physical quantities. Identify the rotational term analogous to each of the
damaskus [11]

Explanation:

Acceleration. Angular acceleration: Is the rate of change of the angular velocity of a body with respect to time.

Force. Torque: Is also called rotational force, since an applied torque will change the rotational motion of a body.

Mass. Moment of inertia: It is the resistance that opposes a body to rotates.

Work. Work: In a rotational motion, the work is done by the torque.

Translational kinetic energy. Rotational kinetic energy: is the kinetic energy due to the rotational motion of a body.

Linear momentum. Angular momentum: Represents the quantity of rotational motion of a body.

Impulse. Angular impulse: Is the change in angular momentum of a body.

4 0
3 years ago
Other questions:
  • .A hard rubber ball, released at chest height, falls to the pavement and bounces back to nearly the same height. When it is in c
    5·1 answer
  • Bob is pushing a box across the floor at a constant speed of 1.2 m/s, applying a horizontal force whose magnitude is 75 N. Alice
    8·1 answer
  • A wave with a fequency of 12 hz has a wavelength of 1.5 meter. at what speed will this wave travel?
    10·1 answer
  • the sole of a tennis shoe has a surface area of 0.0290 m^2. if it is worn by a 65.0 kg person, what pressure does the shoe exert
    10·1 answer
  • How does a vacuum flask keep drinks hot? Explain in terms of conduction, convection and radiation.
    12·1 answer
  • Two students walk in the same direction along a straight path, at a constant speed one at 0.90 m/s and the other at 1.90 m/s. a.
    12·1 answer
  • What is the photosynthes?
    6·2 answers
  • Steam is to be condensed on the shell side of a heat exchanger at 150 oF. Cooling water enters the tubes at 60 oF at a rate of 4
    6·1 answer
  • A light horizontal spring has a spring constant of 138 N/m. A 3.35 kg block is pressed against one end of the spring, compressin
    5·1 answer
  • If 4 resistors are wired in series, what is the equivalent resistance?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!