1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kitty [74]
3 years ago
5

.A hard rubber ball, released at chest height, falls to the pavement and bounces back to nearly the same height. When it is in c

ontact with the pavement, the lower side of the ball is temporarily flattened. Suppose the maxi-mum depth of the dent is on the order of 1 cm. Find the order of magnitude of the maximum acceleration of the ball while it is in contact with the pavement. State your assumptions, the quantities you estimate, and the values you estimate for them.
Physics
1 answer:
ohaa [14]3 years ago
6 0

Answer:

 a = 1.1 10⁵ m / s²

Explanation:

This is a momentum exercise, where we use the relationship between momentum and momentum

          I = ∫ F dt = Δp

= p_f - p₀

as they indicate that the ball bounces at the same height, we can assume that the moment when it reaches the ground is equal to the moment when it bounces, but in the opposite direction

        F t = 2 (m v)

therefore the average force is

         F = 2 m v / t

where in general the mass of the ball unknown, the velocity of the ball can be calculated using the conservation of energy

starting point. Done the ball is released with zero initial velocity

        Em₀ = U = mgh

final point. Upon reaching the ground, just before the deformation begins

        Em_f = K = ½ m v²

energy is conserved in this system

        Em₀ = Em_f

        m g h = ½ m v²

        v = √ (2gh)

This is the velocity of the body when it reaches the ground, so the force remains

        F = 2m √(2gh)   /t

where the height of the person's chest is known and the time that the impact with the floor lasts must be estimated in general is of the order of milli seconds

knowing this force let's use Newton's second law

          F = m a

          a = F / m

 

          a = 2 √(2gh) / t

We can estimate the order of magnitude of this acceleration, assuming the person's chest height of h = 1.5 m and a collision time of t = 1 10⁻³ s

         a = 2 √ (2 9.8 1.5) / 10⁻³

         a = 1.1 10⁵ m / s²

You might be interested in
At what rate must a cylindrical spaceship rotate if occupants are to experience simulated gravity of 0.50 gg? Assume the spacesh
Svetradugi [14.3K]

Answer:

The time needed is T  = 16.8 s

Explanation:

From the question we are told that

      The magnitude of the stimulated acceleration due gravity is  a  =  0.5 g

        The diameter of the spaceship is  d =  35m

       

Generally the force acting on the spaceship is  

       F  =  ma

Given that the spaceship is rotating it implies that the force experienced by the occupant is a centripetal force so

      F  = \frac{mv^2}{r}

Thus  

       ma  =  \frac{mv^2}{r}

=>    \frac{v^2}{r}  =  a

      Generally the speed of this spaceship is mathematically represented as

      v =  \frac{2 \pi}{T}

=>    v^2  =   [\frac{2\pi}{T}] ^2

=>     \frac{\frac{4\pi^2 r^2}{T^2} }{r}  = 0.5g

=>       \frac{4 \pi^2 r }{T^2} =  0.5 g

=>         T  = \sqrt{ \frac{4\pi^2 r}{0.5g}}

substituting values

          T  = \sqrt{ \frac{4* (3.142)^2 *(35)}{0.5 * 9.8}}

         T  = 16.8 s

4 0
2 years ago
Read 2 more answers
A test of the prototype of a new automobile shows that the minimum distance for a controlled stop from 95 km/h to zero is 55 m.
iris [78.8K]

Answer:

-0.64525g

Explanation:

t = Time taken for the car to stop

u = Initial velocity = 95 km/h

v = Final velocity = 0 km/h

s = Displacement

a = Acceleration

Equation of motion

v^2-u^2=2as\\\Rightarrow a=\frac{v^2-u^2}{2s}\\\Rightarrow a=\frac{0^2-95^2}{2\times 0.055}\\\Rightarrow a=-82045.45\ km/h^2

Converting to m/s²

a=82045.45=\frac{82045.45\times 1000}{3600\times 3600}=-6.33\ m/s^2

g = Acceleration due to gravity = 9.81 m/s²

Dividing both the accelerations, we get

\frac{a}{g}=\frac{-6.33}{9.81}=-0.64525\\\Rightarrow a=-0.64525g

Hence, acceleration of the car is -0.64525g

8 0
3 years ago
Complete the sentences to describe the difference between speed and velocity.
xeze [42]

Answer:

velocity =displacement/time

and speed =distance/time

6 0
2 years ago
A vertical wire carries a current straight up in a region where the magnetic field vector points due north. What is the directio
Elanso [62]

Answer:

The direction of the resulting force on this current is due east.

Explanation:

Given;

direction of the magnetic field to be due north

Applying right hand rule which states that: to determine the direction of the magnetic force on a positive moving charge point the thumb of the right hand in the direction of velocity v, the fingers in the direction of magnetic field B, and a perpendicular to the palm points in the direction of magnetic force.

Since the magnetic force must be perpendicular to the magnetic field, and direction of the magnetic field is due north, then the magnetic force must be due East.

Therefore, the direction of the resulting force on this current is due east.

7 0
3 years ago
In your textbook reading Chapter 26, the author suggests that an electric vehicle (EV) fleet can be used as a kind of distribute
d1i1m1o1n [39]

Answer:

Answer for the question is given in the attachment.

Explanation:

Download pdf
8 0
3 years ago
Other questions:
  • Six automobiles are initially traveling at the indicated velocities. The automobiles have different masses and velocities. The d
    10·2 answers
  • (PLEASE HELP) Which of the following describes a mixture?
    15·2 answers
  • A 7.91g bullet is fired into a 1.52-kg ballistic pendulum initially at rest and becomes embedded in it. The pendulum subsequentl
    6·1 answer
  • Help!! I’ll give brainliest!! Which person will hear the highest pitch?
    10·2 answers
  • Based on the information in the graph, which of the atoms listed below is the most stable?
    15·2 answers
  • Which statements accurately describe the motion map?
    15·2 answers
  • In a skating stunt known as "crack-the-whip," a number of skaters hold hands and form a straight line. They try to skate so that
    14·1 answer
  • John is gardening and finds a tree root in the soil. He decides he will try to pull it out. He grabs onto it and uses a force of
    9·1 answer
  • A circular coil that has 100 turns and a radius of 10.0 cm lies in a magnetic field that has a magnitude of 0.0650 T directed pe
    15·1 answer
  • PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE H
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!