Answer:
How do you find out the missing masses in a balloon?
Well, actually you can't find the missing masses in a balloon. Why?
Because the mass of the mass of balloon, it can't see the mass of it, it only see if it the balloon is deflated or inflated.
Explanation:
Hope it helps
#LetsStudy
Answer:
352,088.37888Joules
Explanation:
Complete question;
A hiker of mass 53 kg is going to climb a mountain with elevation 2,574 ft.
A) If the hiker starts climbing at an elevation of 350 ft., what will their change in gravitational potential energy be, in joules, once they reach the top? (Assume the zero of gravitational potential is at sea level)
Chane in potential energy is expressed as;
ΔGPH = mgΔH
m is the mass of the hiker
g is the acceleration due to gravity;
ΔH is the change in height
Given
m = 53kg
g = 9.8m/s²
ΔH = 2574-350 = 2224ft
since 1ft = 0.3048m
2224ft = (2224*0.3048)m = 677.8752m
Required
Gravitational potential energy
Substitute the values into the formula;
ΔGPH = mgΔH
ΔGPH = 53(9.8)(677.8752)
ΔGPH = 352,088.37888Joules
Hence the gravitational potential energy is 352,088.37888Joules
Answer:
107 m
Explanation:
Convert km/h to m/s:
128.4 km/h × (1000 m / km) × (1 h / 3600 s) = 35.67 m/s
Distance = rate × time
d = 35.67 m/s × 3.0 s
d = 107 m
Answer:
minimum stopping distance will be d = 75 m
Explanation:
Maximum force exerted by the bracket is given as
F = 9000 N
now we know that mass of the object is
m = 6000 kg
so the maximum acceleration that truck can have is given as



now for finding minimum stopping distance of the truck



Explanation:
Force is applied to lift a body against the force of gravity. Example: If an object is lifted to a certain height (h)