Answer:
D
Explanation:
f = ma
2 x 12 = 24
answer could differ since it's rolling down a ramp. if an angle is given our approach differs.
Answer:
Mass = 386 kg
Explanation:
<u><em>Density = Mass / Volume</em></u>
Mass = Density × Volume
Where D = 19300 kg/m³ , V = 0.02 m³
<em>Putting the given in the above formula</em>
Mass = 19300 × 0.02
Mass = 386 kg
Answer: 1010.92 m/s
Explanation:
According to Newton's law of universal gravitation:
(1)
Where:
is the gravitational force between Earth and Moon
is the Gravitational Constant
is the mass of the Earth
is the mass of the Moon
is the distance between the Earth and Moon
Asuming the orbit of the Moon around the Earth is a circular orbit, the Earth exerts a centripetal force on the moon, which is equal to
:
(2)
Where
is the centripetal acceleration given by:
(3)
Being
the orbital velocity of the moon
Making (1)=(2):
(4)
Simplifying:
(5)
Making (5)=(3):
(6)
Finding
:
(7)
(8)
Finally:
Your answer is 8. You add 2 + 1 + 5.3 to get 8.3. You round down to 8 because of the sig fig rules.
There are missing data in the text of the problem (found them on internet):
- speed of the car at the top of the hill:

- radius of the hill:

Solution:
(a) The car is moving by circular motion. There are two forces acting on the car: the weight of the car

(downwards) and the normal force N exerted by the road (upwards). The resultant of these two forces is equal to the centripetal force,

, so we can write:

(1)
By rearranging the equation and substituting the numbers, we find N:

(b) The problem is exactly identical to step (a), but this time we have to use the mass of the driver instead of the mass of the car. Therefore, we find:

(c) To find the car speed at which the normal force is zero, we can just require N=0 in eq.(1). and the equation becomes:

from which we find