1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aliya0001 [1]
2 years ago
8

Which is the correct order of events in the water cycle?

Physics
1 answer:
stiks02 [169]2 years ago
5 0

Answer: bodies of water evaporates in to the air makes clouds, clouds rain down anto land then makes lakes arivers and puddles some of the rivers go evaperate and repeat

Explanation:

You might be interested in
In a weekly project update meeting, Liza asks the following questions of one of her employees: "Why were you late meeting your l
Aleonysh [2.5K]

Answer: This type of questions are called probing questions. The correct option is D.

Explanation:

Probing questions are the type of questions that are asked to investigate an ongoing event. It helps the investigator to know more about what is happening and how to obtain conclusive decisions through the personal opinions of the respondent . For example from the question, Liza wanted to know more about the project updates which was held in the weekly meetings. She asked her employees questions like:

- Why were you late meeting your last deadline?

-Were there external factors that delayed your work?

-Did other coworkers get their part of the assignment to you on time?

- Do you need more help from me?".

7 0
3 years ago
A 795-loop square armature coil with a side of 10. 5 cm rotates at 70. 0 rev/s in a uniform magnetic field of strength 0. 45 t.
Agata [3.3K]

The rms voltage output of the generator is 1.94 × 10⁻ ⁵ V.

RMS is an acronym for root mean squared. An RMS value is more than just the "amount of AC power that causes the same heating impact as an analogous DC power" or something along those lines.

No. of loop = 795

Diameter of the coil = 10.5 cm

Radius of the coil = 5.25 cm

Magnetic Field, B = 0.45 T

Time, t = 70.0 rev/s

              V_{rms} =\frac{NwAB}{\sqrt{2} }

Where,

              N = No. of loop

              A = Area of the coil

              B = Magnetic Field

              V_{rms} = Voltage rms

Area of the coil = πr²

                        = 86.57 cm²

w = 2π/t

   =( 2 × 3.141)/70.0

   = 0.089

V_{rms} =\frac{795*0.089*86.57* 0.45}{\sqrt{2} }\\\\V_{rms} =\frac{2756.36}{\sqrt{2} }\\\\\\V_{rms} =\frac{2756.36}{1.414 }\\\\V_{rms} = 1.94 * 10^-^5 V

Therefore, the rms voltage output of the generator is 1.94 × 10⁻ ⁵ V.

Learn more about rms voltage here:

brainly.com/question/13156072

#SPJ4

8 0
9 months ago
An Atwood machine consists of two masses, mA = 6.8 kg and mB = 8.0 kg , connected by a cord that passes over a pulley free to ro
Lisa [10]

To solve this problem it is necessary to apply the concewptos related to Torque, kinetic movement and Newton's second Law.

By definition Newton's second law is described as

F= ma

Where,

m= mass

a = Acceleration

Part A) According to the information (and as can be seen in the attached graph) a sum of forces is carried out in mass B, it is obtained that,

\sum F = m_b a

m_Bg-T_B = m_Ba

T_B = m_Bg-m_Ba

In the case of mass A,

\sum F = m_A a

T_A = m_Ag-m_Aa

Making summation of Torques in the Pulley we have to

\sum\tau = I\alpha

T_BR_0-T_AR_0=I\alpha

T_B-T_A=I\frac{a}{R^2_0}

Replacing the values previously found,

(m_Bg-m_Ba )-(m_Ag-m_Aa )=I\frac{a}{R^2_0}

(m_B-m_A)g-(m_B+m_A)a=I\frac{a}{R^2_0}

a = \frac{(m_B-m_A)g}{\frac{I}{R_0^2}+(m_B+m_A)}

a = \frac{(m_B-m_A)g}{\frac{MR^2_0^2/2}{R_0^2}+(m_B+m_A)}

a =\frac{(m_B-m_A)g}{\frac{M}{2}+(m_B+m_A)}

Replacing with our values

a =\frac{(8-6.8)(9.8)}{\frac{0.8}{2}+(8+6.8)}

a=0.7736m/s^2

PART B) Ignoring the moment of inertia the acceleration would be given by

a' =\frac{(m_B-m_A)g}{(m_B+m_A)}

a' =\frac{(8-6.8)(9.8)}{(8+6.8)}

a' = 0.7945

Therefore the error would be,

\%error = \frac{a'-a}{a}*100

\%error = \frac{0.7945-0.7736}{0.7736}*100

\%error = 2.7%

8 0
2 years ago
8. Volcanoes that are mostly made up of pyroclastic material are called?
djyliett [7]

Answer:

I think it is Cinder Cone volcano.

6 0
3 years ago
After polishing his 2-kg wrestling trophy, Mike sets it down on the ground and walks away to find more polish. Meanwhile, Julie
klio [65]

1) The initial momentum of the trophy is zero

2) The initial momentum of the bowling ball is 160 kg m/s

3) The total momentum before the collision is 160 kg m/s

4) The total momentum of the system after the collision is 160 kg m/s

5) The final velocity of the trophy is 32 m/s

Explanation:

1)

The momentum of an object is given by

p=mv

where

m is the mass of the object

v is its velocity

In this problem, the data for the trophy before the collision are:

m = 2 kg is the mass

v = 0 is its initial velocity

Therefore, the initial momentum of the trophy is

p_1=(2)(0)=0

2)

Using the same equation used in part 1), the initial momentum of the bowling ball is

p=mv

where

m is the mass of the bowling ball

v is its initial velocity

The data of the problem are

m = 8 kg is the mass

v = 20 m/s is the velocity

Substituting,

p_2=(8)(20)=160 kg m/s

3)

The total momentum of the system before the collision is given by the sum between the initial momentum of the trophy and the initial momentum of the bowling ball:

p_i = p_1 + p_2

where

p_1 is the initial momentum of the trophy

p_2 is the initial momentum of the ball

Here we have

p_1 = 0

p_2 = 160 kg m/s

Therefore, the total momentum is

p_i = 0 + 160 = 160 kg m/s

4)

According to the law of conservation of momentum, for an isolated system (=no external unbalanced forces acting on the system), the total momentum of the system is conserved before and after the collision:

p_i = p_f

where

p_i is the total momentum before the collision

p_f is the total momentum after the collision

If we consider the system in the problem to be isolated (i.e. no frictional forces acting on the ball or the trophy), we can therefore say that the total momentum after the collision must be equal to the total momentum before the collision: therefore,

p_f = 160 kg m/s

5)

We can write the total momentum after the collision as

p_f = m_1 v_1 + m_2 v_2

where:

m_1 = 2 kg is the mass of the trophy

v_1 is the final velocity of the trophy

m_2 = 8 kg is the mass of the bowling ball

v_2 = 12 m/s is the final velocity of the ball

Since we also know the value of the final total momentum,

p_f = 160 kg m/s

we can solve the equation to find the velocity of the trophy:

v_1 = \frac{p_f - m_2 v_2 }{m_1}=\frac{160-(8)(12)}{2}=32 m/s

Learn more about momentum:

brainly.com/question/7973509

brainly.com/question/6573742

brainly.com/question/2370982

brainly.com/question/9484203

#LearnwithBrainly

4 0
3 years ago
Other questions:
  • Calculate the energy of the green light emitted, per photon, by a mercury lamp with a frequency of 5.49 × 1014 hz.
    6·1 answer
  • What is a biological study?
    15·2 answers
  • What is reflection of light
    7·2 answers
  • What’s your opinion on water conservation? 5 sentences
    13·1 answer
  • What does a kidney do
    13·2 answers
  • HELPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PLEASE
    5·1 answer
  • 50 points for any help on these 3 physics problems!!!!
    5·1 answer
  • The “turning effect of a force” (T = F * r) is:
    7·1 answer
  • Pls help me with this question I want the answer ASAP quick
    9·1 answer
  • HELP ME ASAP PLEASE!!!!!
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!