It is malleable
Explanation:
The property that makes metals such as sterling silver the best to create hammered earrings is their malleability.
All metals have a unique and fascinating property of being malleable. They can be carved into any of shape. When hammered they simply draw out and retain their long range ordering of their crystal lattice.
This is made possible by the presence of metallic bonding between the atoms.
- The bulk of the physical properties of metals can be attributed the metallic bonds in them.
- Metals have large sea of electrons in them.
- In forming metallic bonds, there is an attraction between the positive nuclei of all the closely packed atoms in the lattice and the electron cloud jointly formed by all the atoms by loosing their outermost shell electrons.
- Metals like silver have low ionization energy.
- When they are hammered, they spread out the energy from the hammering.
learn more:
Metals brainly.com/question/2474874
#learnwithBrainly
Answer:
Explain how sociology will contribute to the understanding of daily life and what is happening within it?
Sociology is the study of society of human being, how they develop and those things put in place for such development
Explanation:
Sociology helps to develop culture, how people interact with one another and this boost the relationship and development as far as human society is concerned.
Answer:
Winner wins by 0.969 s
Explanation:
For the Porche:
Given:
Displacement of Porsche s = 400 m
Acceleration of Porsche a = 3.4 m/s^2
From Newton's second equation of motion,
(u = 0 as the car was initially at rest)
Substituting the values into the equation, we have

= 235.29 / 3.4
t = 15.33 s
For the Honda:
Displacement of Honda = 310 m
Acceleration of Honda = 3 m/s^2
Applying Newton's second equation of motion
(u = 0 for same reason)
Substituting the values into the equation, we obtain

= 620 / 3
t = 14.37 s
Hence
The winner (honda) wins by a time interval of = 15.33 - 14.37
=0.969 s
Answer: The final temperature is 470K
Explanation: Using the relation;
Q= ΔU +W
Given, n = 2mol
Initial temperature T1= 345K
Heat =Q= 2250J
Workdone=W=-870J(work is done on gas)
T2 =Final temperature =?
ΔU =3/2nR(T2-T1)
ΔU=3/2 × 2 ×8.314 (T2 - 345)
ΔU=24.942(T2-345)
Therefore Q = 24.942(T2-345)+ (-870)
2250=24.942(T2-345)+ (-870)
125.09=(T2-345)
T2 =470K
Therfore the final temperature is 470K