Using the Universal Gratitation Law, we have:
Again applying the formula in the new situation, comes:
Number 4If you notice any mistake in my english, please let me know, because i am not native.
Answer:
particle's potential energy = 70J
Explanation:
From conservation of energy; K1 + Ue1 = K2 + Ue2
where K1 and K2 are the kinetic energies at two positions and Ue1 and Uue2 are the electrical potential energies at two positions.
k1 = 10J, Ue1 = 100J
K2 = 40J
substitute into K1 + Ue1 = K2 + Ue2
Ue2 = K1 + Ue1 - K2
= 10 +100 - 40
Ue2 = 70J
Answer:
The current will be increased and also for the resistance.
Explanation:
The analysis of a direct current circuit can give us the explanation we need. Using the ohm law, which tells us that the voltage is equal to the product of the current by the resistance we have:
![V=I*R\\where\\V= voltage [V]\\I= amperes [amp]\\R=resistance [ohm]\\](https://tex.z-dn.net/?f=V%3DI%2AR%5C%5Cwhere%5C%5CV%3D%20voltage%20%5BV%5D%5C%5CI%3D%20amperes%20%5Bamp%5D%5C%5CR%3Dresistance%20%5Bohm%5D%5C%5C)
The voltage is equal to the potential difference therefore we will have these expressions:

If we increase the potential differential or circuit voltage, the current will also increase and so does the resistance by increasing the voltage. If we put numerical values in the equation given before, we can confirm this fact.
The study of how the world works
The horizontal component of the magnetic field is 12.6 μT.
The magnetic influence on moving electric currents, electric charges, and magnetic materials is described by a magnetic field, which is a vector field. When a charge moves through a magnetic field, a force that is perpendicular to both its own velocity and the magnetic field operates on it.
The horizontal component of the Earth's magnetic field is perpendicular to the axis of a circular coil with five turns and a diameter of D = 30.0 cm that is vertically orientated.
A coil current of I = 0.600 A causes a horizontal compass to deflect 45.0° from magnetic north when it is positioned in the coil's center.
Let B be the magnetic field and R be the radius of the circular coil.
Then the horizontal component of the Earth's magnetic field is given as:
B(h) = B(coil) = μ₀ NI / 2R
B(h) = (4π × 10⁻⁷ ) (5)(0.6) / 0.3
B(h) = 12.6 μT
Learn more about magnetic field here:
brainly.com/question/14411049
#SPJ4