ANSWER and EXPLANATION
We want to identify if there will be an electric field and a magnetic field around the two sticks electrified by charges of opposite signs.
An electric field is a physical field that surrounds electrically charged particles and exerts a force on other charged particles in the surrounding.
This implies that the presence of electric charges on both sticks generates electric fields on them. Since the two charges are opposite, the electric force acting on them will be attractive.
Hence, there is an electric field.
A stationary charged object produces an electric field, as explained above, but will only produce a magnetic field if there is a motion of the object.
Hence, except the two sticks are caused to move, there will be no magnetic field around them.
Answer:
- Newton's first law applies. An object at rest will stay that way until a force is applied.
- Any amount of effort can be applied to any amount of mass (in the ideal case). The question is not sufficiently specific.
Explanation:
A force is required to move an object because the object will stay at rest until a force is applied.
__
The effort required to lift or push two masses instead of one depends on the desired effect. For the same kinetic energy, no more effort is required. For the same momentum, half the effort is required for two masses. For the same velocity, double the effort is required.
Answer:
<h2><em>
12.45eV</em></h2>
Explanation:
Before calculating the work function, we must know the formula for calculating the kinetic energy of an electron. The kinetic energy of an electron is the taken as the difference between incident photon energy and work function of a metal.
Mathematically, KE = hf - Ф where;
h is the Planck constant
f is the frequency = c/λ
c is the speed of light
λ is the wavelength
Ф is the work function
The formula will become KE = hc/λ - Ф. Making the work function the subject of the formula we have;
Ф = hc/λ - KE
Ф = hc/λ - 1/2mv²
Given parameters
c = 3*10⁸m/s
λ = 97*10⁻⁹m
velocity of the electron v = 3.48*10⁵m/s
h = 6.62607015 × 10⁻³⁴
m is the mass of the electron = 9.10938356 × 10⁻³¹kg
Substituting the given parameters into the formula Ф = hc/λ - 1/2mv²
Ф = 6.63 × 10⁻³⁴*3*10⁸/97*10⁻⁹ - 1/2*9.11*10⁻³¹(3.48*10⁵)²
Ф = 0.205*10⁻¹⁷ - 4.555*10⁻³¹*12.1104*10¹⁰
Ф = 0.205*10⁻¹⁷ - 55.163*10⁻²¹
Ф = 0.205*10⁻¹⁷ - 0.0055.163*10⁻¹⁷
Ф = 0.1995*10⁻¹⁷Joules
Since 1eV = 1.60218*10⁻¹⁹J
x = 0.1995*10⁻¹⁷Joules
cross multiply
x = 0.1995*10⁻¹⁷/1.60218*10⁻¹⁹
x = 0.1245*10²
x = 12.45eV
<em>Hence the work function of the metal in eV is 12.45eV</em>
Answer: 4.50*10^-6T (0.00000450071T)
Explanation: A current carrying conductor has been knowing to generate a specific amount of magnetic field.
This is given by the Bio-savart law (mathematical).
The Bio-savart law is a mathematical equation that gives the value of strength of the magnetic field created by a current carrying conductor.
B=(Uo* I) /2πr
Where
B= strength of magnetic field
Uo = magnetic permeability in free space = 1.257 *10^-6
r = distance between current carrying conductor and any reference point.
By doing the neccesary algebra, we have
B=(1.257 *10^-6 * 180)/ (2 * 3.142 * 8)
B= 2.2626 *10^-4 / 50.2857
B=4.5 * 10^-6T (0.00000450071T)
Answer:
The center of mass of the Earth–Moon system is 4.613 × 10⁶ m from center of the Earth.
Explanation:
Let the reference point be the center of the Earth

Where;
Xcm is the distance from center of the Earth =?
Me is the mass of the Earth = 6 × 10²⁴ kg
Xe is the center mass of the Earth = 0
Mm is the mass of the moon = 7 × 10²² kg
Xm is the center mass of the moon = 4 × 10⁸ m

Therefore, the center of mass of the Earth–Moon system is 4.613 × 10⁶ m from center of the Earth.