Answer:
Decreases
Explanation:
Ideal gas law:
PV = nRT
where P is absolute pressure,
V is volume,
n is number of moles,
R is gas constant,
and T is absolute temperature.
If V is constant and T decreases, then P must decrease.
Answer:
a) 23.2 e V
b) energy of the original photon is 36.8 eV
Explanation:
given,
energy at ground level = -13.6 e V
energy at first exited state = - 3.4 e V
A photon of energy ionized from ground state and electron of energy K is released.
h ν₁ - 13.6 = K
K combine with photon in first exited state giving out photon of energy
= 26.6 e V
h c = 6.626 × 10⁻³⁴ × 3 × 10⁸ = 12400 e V A°
K + ( 3.4 ) = 26.6 e V
a) energy of free electron
K = 26.6 - 3.4 = 23.2 e V
b) energy of the original photon
h ν₁ - 13.6 = K
h ν₁ = 23.2 + 13.6
= 36.8 e V
energy of the original photon is 36.8 eV
Guessing you want the average speed. We can multiple each speed by the time we spent going that speed, and them all together and then divide by the total time we spent in traffic to get the average speed. We spent a total of 7.5 minutes in traffic, so average speed = (12*1.5+0*3.5+15*2.5)/7.5 = 7.4 m/s
Answer:
20 m/s/s
Explanation:
F=ma, 350=17.5 * a, a=20 m/s/s
<span>If 1 eighth equals 1 billion 7 eighth equals 7 billion.
The asker of the second question needs a tutorial in radiometric dating. There is little likelihood that the daughter isotope has the same atomic weight as the parent isotope. To measure the mass isotopes doesn't tell us how many atoms of each exist. To get around that let's pretend — which will likely serve the purpose ineptly intended — that the values give an the particle ratio, 125:875.
The original parent isotope count was 125 + 875 = 1000. The remaining parent isotope is 125/1000 or 1/8. 1/8 = (1/2)^h, where h is the number of half-lives.
h = log (1/8) ÷ log(1/2) = 3
And 3 half-lives • 150,000 years/half-life = 450,000 years.</span>