Answer:
0.14 J
Explanation:
The maximum velocity is the amplitude times the angular frequency.
vmax = Aω
ω = vmax / A
ω = (3.2 m/s) / (0.06 m)
ω = 53.3 rad/s
For a spring-mass system:
ω = √(k / m)
ω² = k / m
k = ω²m
k = (53.3 rad/s)² (0.050 kg)
k = 142 N/m
The elastic potential energy is:
EE = ½ kx²
EE = ½ (142 N/m) (0.044 m)²
EE = 0.14 J
Answer:
B
Explanation:
Let m be mass of the object and v be speed of object b.
Kinetic Energy of B = 1/2 mv^2
Kinetic Energy of A = 1/2 m(2v)^2
= 2 mv^2
= 4 (1/2 mv^2)
= 4 × Kinetic Energy of B
Hence Object A has four times the kinetic energy of object B (<em>A</em><em>n</em><em>s</em><em> </em><em>B</em><em>)</em>
Answer:
4.2 J
Explanation:
Specific heat capacity: This is defined as the amount of a heat required to rise a unit mass of a substance through a temperature of 1 K
From specific heat capacity,
Q = cmΔt.............................. Equation 1
Where Q = amount of energy absorbed or lost, c = specific heat capacity of water, m = mass of water, Δt = Temperature rise.
Given: m = 1 g = 0.001 kg, Δt = 1 °C
Constant : c = 4200 J/kg.°C
Substitute into equation 1
Q = 0.001×4200(1)
Q = 4.2 J.
Hence the energy absorbed or lost = 4.2 J
Answer:
C
Explanation:
potential energy is stored energy that an object has due to its position or chemical composition. Since the truck has the possibility to move down the hill when it is at the top of the hill, it has a great amount of potential energy, howver when its at the bottom of the hill, it doesn’t have the possibility to move or can move v little due to its positions, therefore it has little to no potienatal energy.