1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Effectus [21]
3 years ago
15

In a Millikan oil-drop experiment (Section 22-8), a uniform electric field of 5.78 x 105 N/C is maintained in the region between

two plates separated by 8.56 cm. Find the potential difference (in V) between the plates.
Physics
1 answer:
Snezhnost [94]3 years ago
5 0

Answer:

The required potential difference is 4.95 \times 10^{4}~V.

Explanation:

We know, electric field is nothing but the negative gradiant of potential. Mathematically, in three-dimension,

\vec{E} = -\vec{\nabla}V

In one dimension, the magnitude of the electric field is

E = \dfrac{V}{x}

where 'V' is the applied voltage and 'x'is the distance through which the voltage is applied.

Given, V = 5.78 \times 10^{5}~N~C^{-1}~ and~ x = 8.56~cm = 0.0856~m.

So the required potential difference is

V = E \times x = 5.78 \times 10^{5}~N~C^{-1} \times 0.0856~m = 4.95 \times 10^{4}~V

You might be interested in
Sound with a frequency of 1250 Hz leaves a room through a doorway with a width of 1.05 m.At what minimum angle relative to the c
kiruha [24]

Answer:

15.19°, 31.61°, 51.84°

Explanation:

We need to fin the angle for m=1,2,3

We know that the expression for wavelenght is,

\lambda = \frac{c}{f}

Substituting,

\lambda = \frac{344}{1250}

\lambda = 0.2752m

Once we have the wavelenght we can find the angle by the equation of the single slit difraction,

sin\theta = \frac{m \lambda}{W}

Where,

W is the width

m is the integer

\lambda the wavelenght

Re-arrange the expression,

\theta = sin^{-1} \frac{m\lambda}{W}

For m=1,

\theta = sin^{-1} \frac{1 (0.2752)}{1.05}= 15.19\°

For m=2,

\theta = sin^{-1} \frac{2 (0.2752)}{1.05}= 31.61\°

For m=3,

\theta = sin^{-1} \frac{3 (0.2752)}{1.05}= 51.84\°

<em>The angle of diffraction is directly proportional to the size of the wavelength.</em>

5 0
3 years ago
At the same moment from the top of a building 3.0 × 10 2 m tall, one rock is dropped and one is thrown downward with an initial
Bess [88]
The equation that relates distance, velocities, acceleration, and time is,
                   d = V₀t + 0.5gt²
where d is distance,
V₀ is the initial velocity,
t is time, and 
g is the acceleration due to gravity (equal to 9.8 m/s²)

(1) Dropped rock,
                  (3 x 10² m ) = 0(t) + 0.5(9.8 m/s²)(t²)
The value of t from this equation is 24.73 s

(2) Thrown rock with V₀ = 26 m/s
                (3 x 10² m) = (26)(t) + 0.5(9.8 m/s²)(t²)
The value of t from the equation is 5.61 s

The difference between the tim,
        difference = 24.73 s - 5.61 s
          difference = 19.12 s

<em>ANSWER: 19.12 s</em>
5 0
3 years ago
Read 2 more answers
The electric field of a sinusoidal electromagnetic wave obeys the equation E = (375V /m) cos[(1.99× 107rad/m)x + (5.97 × 1015rad
kenny6666 [7]

Answer:

a)  v = 2,9992 10⁸ m / s , b)  Eo = 375 V / m ,  B = 1.25 10⁻⁶ T,

c)     λ = 3,157 10⁻⁷ m,   f = 9.50 10¹⁴ Hz ,  T = 1.05 10⁻¹⁵ s , UV

Explanation:

In this problem they give us the equation of the traveling wave

        E = 375 cos [1.99 10⁷ x + 5.97 10¹⁵ t]

a) what the wave velocity

all waves must meet

        v = λ f

In this case, because of an electromagnetic wave, the speed must be the speed of light.

        k = 2π / λ

        λ = 2π / k

        λ = 2π / 1.99 10⁷

        λ = 3,157 10⁻⁷ m

        w = 2π f

        f = w / 2 π

        f = 5.97 10¹⁵ / 2π

        f = 9.50 10¹⁴ Hz

the wave speed is

        v = 3,157 10⁻⁷   9.50 10¹⁴

        v = 2,9992 10⁸ m / s

b) The electric field is

           Eo = 375 V / m

to find the magnetic field we use

           E / B = c

           B = E / c

            B = 375 / 2,9992 10⁸

            B = 1.25 10⁻⁶ T

c) The period is

           T = 1 / f

            T = 1 / 9.50 10¹⁴

            T = 1.05 10⁻¹⁵ s

the wavelength value is

          λ = 3,157 10-7 m (109 nm / 1m) = 315.7 nm

this wavelength corresponds to the ultraviolet

5 0
4 years ago
What is one standard kilogramun si system<br><br><br><br><br>​
Phoenix [80]

Answer:

The kilogram (kg) is defined by taking the fixed numerical value of the Planck constant h to be 6.62607015 ×10−34 when expressed in the unit J s, which is equal to kg m2 s−1, where the meter and the second are defined in terms of c and ∆νCs.

3 0
3 years ago
Read 2 more answers
1. The whole world is __________________ with rocks.
ArbitrLikvidat [17]
I got it keep it bucks worth u this it tooooo muchhhhhhh
4 0
3 years ago
Read 2 more answers
Other questions:
  • Determine whether each of the following is exothermic or endothermic and indicate the sign of δh. A. Natural gas burning on a st
    9·1 answer
  • Why are there shadows?
    10·2 answers
  • The property that compares the mass of an object with its volume is _____.
    9·2 answers
  • A 1.35 V potential difference is maintained across a 1.1 m length of tungsten wire that has a cross-sectional area of 0.72 mm2 .
    6·1 answer
  • What is the net work done on the 20kg block while it moves the 4 meters?
    10·1 answer
  • If the force used to push a shopping cart increases, the cart's acceleration will
    12·2 answers
  • Which type of energy is released when a nucleus is split apart?
    5·2 answers
  • A baseball (A, weight 0.33 lb) moves horizontally at 20 ft/s when it strikes a stationary block (B, weight 10 lb), supported by
    12·1 answer
  • Students asked to measure the temperature of a reaction beaker recorded the following temperatures. 103.7°C, 108.4°C, 105.8°C, 1
    15·1 answer
  • According to gay-lussac’s law: select one:
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!