Answer:
largest lead = 3 m
Explanation:
Basically, this problem is about what is the largest possible distance anchorman for team B can have over the anchorman for team A when the final leg started that anchorman for team A won the race. This show that anchorman for team A must have higher velocity than anchorman for team B to won the race as at the starting of final leg team B runner leads the team A runner.
So, first we need to calculate the velocities of both the anchorman
given data:
Distance = d = 100 m
Time arrival for A = 9.8 s
Time arrival for B = 10.1 s
Velocity of anchorman A = D / Time arrival for A
=100/ 9.8 = 10.2 m/s
Velocity of anchorman B = D / Time arrival for B
=100/10.1 = 9.9 m/s
As speed of anchorman A is greater than anchorman B. So, anchorman A complete the race first than anchorman B. So, anchorman B covered lower distance than anchorman A. So to calculate the covered distance during time 9.8 s for B runner, we use
d = vt
= 9.9 x 9.8 = 97 m
So, during the same time interval, anchorman A covered 100 m distance which is greater than anchorman B distance which is 97 m.
largest lead = 100 - 97 = 3 m
So if his lead no more than 3 m anchorman A win the race.
Compounds are elements that are chemically combined, like water for example (it’s both hydrogen and oxygen.)
Your welcome LOL plz like
Answer:
0.0000109261200583 s
0.0109261200583
Explanation:
= Distance from right ear = 3 m
s = Distance between ears = 15 cm
v = Speed of sound in air = 343 m/s
Distance between the left ear and the bird

Time

Time difference would be

The time difference is 0.0000109261200583 s
Time period is given by

The ratio is

The ratio is 0.0109261200583
Crushing pressure. Human bodies are used to air pressure. The air pressure in our lungs, ears and stomachs is the same as the air pressure outside of our bodies, which ensures that we don't get crushed. Our bodies are also flexible enough to cope when the internal and external pressures aren't exactly the same.