Answer:
B. 25 m/s/s
Explanation:
Centripetal acceleration is the square of the tangential velocity divided by the radius of curvature.
a = v² / r
Given v = 10 m/s and r = 4 m:
a = (10 m/s)² / 4 m
a = 25 m/s²
Answer:
Explanation:
This is a simple gravitational force problem using the equation:
where F is the gravitational force, G is the universal gravitational constant, the m's are the masses of the2 objects, and r is the distance between the centers of the masses. I am going to state G to 3 sig fig's so that is the number of sig fig's we will have in our answer. If we are solving for the gravitational force, we can fill in everything else where it goes. Keep in mind that I am NOT rounding until the very end, even when I show some simplification before the final answer.
Filling in:
I'm going to do the math on the top and then on the bottom and divide at the end.
and now when I divide I will express my answer to the correct number of sig dig's:
6.45 × 10¹⁶ N
Ernest Rutherford is the answer you are looking for my friend.
Answer:
I'm not completely sure, but I believe the first and third of the three are mechanical.
Explanation:
Chemical potential isn't moving or about to go into motion. It can't be mechanical.
Explanation:
Given that,
Wavelength of the light, 
(a) Slit width, 
The angle that locates the first dark fringe is given by :



(b) Slit width, 
The angle that locates the first dark fringe is given by :



Hence, this is the required solution.