¿es demasiado tarde para ayudarte?
In an undisturbed sequence of layers of rocks, the younger layers lie on top of the older layers
C. a change of state. It can be a physical or a chemical state of change.
The temperature of a liquid can exceed its boiling point. An example is water. Although at ordinary pressure of 1 atm, the boiling point is 100 degrees, water can still exist in higher temperatures but this time in another state. Superheated steam is the term used for water whose temperature has higher than the boiling point
Answer:
![\mathbf{s =\sqrt [3]{\dfrac{K_{sp}}{4}}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bs%20%3D%5Csqrt%20%5B3%5D%7B%5Cdfrac%7BK_%7Bsp%7D%7D%7B4%7D%7D%7D)
Less than the concentration of Pb2+(aq) in the solution in part ( a )
Explanation:
From the question:
A)
We assume that s to be the solubility of PbI₂.
The equation of the reaction is given as :
PbI₂(s) ⇌ Pb²⁺(aq) + 2I⁻(aq); Ksp = 7 × 10⁻⁹
[Pb²⁺] = s
Then [I⁻] = 2s
![K_{sp} =\text{[Pb$^{2+}$][I$^{-}$]}^{2} = s\times (2s)^{2} = 4s^{3}\\s^{3} = \dfrac{K_{sp}}{4}\\\\s =\mathbf{ \sqrt [3]{\dfrac{K_{sp}}{4}}}\\\\\text{The mathematical expressionthat can be used to determine the value of }\mathbf{s =\sqrt [3]{\dfrac{K_{sp}}{4}}}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BPb%24%5E%7B2%2B%7D%24%5D%5BI%24%5E%7B-%7D%24%5D%7D%5E%7B2%7D%20%3D%20s%5Ctimes%20%282s%29%5E%7B2%7D%20%3D%20%204s%5E%7B3%7D%5C%5Cs%5E%7B3%7D%20%3D%20%5Cdfrac%7BK_%7Bsp%7D%7D%7B4%7D%5C%5C%5C%5Cs%20%3D%5Cmathbf%7B%20%5Csqrt%20%5B3%5D%7B%5Cdfrac%7BK_%7Bsp%7D%7D%7B4%7D%7D%7D%5C%5C%5C%5C%5Ctext%7BThe%20mathematical%20expressionthat%20can%20be%20used%20to%20determine%20the%20value%20of%20%20%7D%5Cmathbf%7Bs%20%3D%5Csqrt%20%5B3%5D%7B%5Cdfrac%7BK_%7Bsp%7D%7D%7B4%7D%7D%7D)
B)
The Concentration of Pb²⁺ in water is calculated as :
![\mathbf{s =\sqrt [3]{\dfrac{K_{sp}}{4}}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bs%20%3D%5Csqrt%20%5B3%5D%7B%5Cdfrac%7BK_%7Bsp%7D%7D%7B4%7D%7D%7D)
![\mathbf{s =\sqrt [3]{\dfrac{7*10^{-9}}{4}}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bs%20%3D%5Csqrt%20%5B3%5D%7B%5Cdfrac%7B7%2A10%5E%7B-9%7D%7D%7B4%7D%7D%7D)
![\mathbf{s} =\sqrt[3]{1.75*10^{-9}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bs%7D%20%3D%5Csqrt%5B3%5D%7B1.75%2A10%5E%7B-9%7D%7D)

The Concentration of Pb²⁺ in 1.0 mol·L⁻¹ NaI




The equilibrium constant:
![K_{sp} =[Pb^{2+}}][I^-]^2 \\ \\ K_{sp} = s*(1.0*2s)^2 =7*1.0^{-9} \\ \\ s = 7*10^{-9} \ \ m/L](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5BPb%5E%7B2%2B%7D%7D%5D%5BI%5E-%5D%5E2%20%5C%5C%20%5C%5C%20K_%7Bsp%7D%20%3D%20s%2A%281.0%2A2s%29%5E2%20%3D7%2A1.0%5E%7B-9%7D%20%5C%5C%20%5C%5C%20s%20%3D%207%2A10%5E%7B-9%7D%20%5C%20%5C%20%20m%2FL)
It is now clear that maximum possible concentration of Pb²⁺ in the solution is less than that in the solution in part (A). This happens due to the common ion effect. The added iodide ion forces the position of equilibrium to shift to the left, reducing the concentration of Pb²⁺.