1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natta225 [31]
3 years ago
11

The process that occurs when physical forces break rock into smaller pieces without changing the rock's chemical composition is

called ____.
Physics
2 answers:
jek_recluse [69]3 years ago
6 0
<span>Mechanical Weathering</span>
BartSMP [9]3 years ago
4 0
The correct answer is physical weathering, also known as mechanical weathering. An example of this would be when water falls into the cracks of a rock. It freezes during cold times and expands in size, which causes the rock to crack even more. When it melts, the crack is bigger and new water goes inside and cracks it even more, and so on and so forth.
You might be interested in
An object with velocity 141 ft/s has a kinetic energy of 1558.71 ft∙lbf, on a planet whose gravity is 31.5 ft/s2. What is its
Sidana [21]

Answer:

The mass of the object is 5.045 lbm.

Explanation:

Given;

kinetic energy of the object, K.E = 1558.71 ft.lbf

velocity of the object, V = 141 ft/s

The kinetic energy of the object is calculated as;

K.E = \frac{1}{2} mV^2\\\\mV^2 = 2K.E\\\\m = \frac{2K.E}{V^2} \\\\1 \ lbf = 32.174 \ lbm.ft/s^2\\\\m  = \frac{2 \ \times \ 1558.71 \ ft.lbf \ \times \ 32.174 \ lbm.ft/s^2 }{(141 \ ft/s)2 \ \  \times \ \ \ \ 1   \ lbf\ }

m  = \frac{(2 \ \times \ 1558.71  \ \times \ 32.174) \ lbm.ft^2/s^2 }{(141 )^2\ ft^2/s^2 }\\\\m = \frac{(2 \ \times \ 1558.71  \ \times \ 32.174) \ lbm }{(141 )^2 }\\\\m = 5.045 \ lbm

Therefore, the mass of the object is 5.045 lbm.

6 0
3 years ago
A wrench is used to tighten a spark plug. If the wrench handle is 0.20m and a force of 20N is applied, what is the torque applie
Zanzabum

Torque [Nm] = Force [N] x Force arm [m]

C=F*b=20*0.20=4 Nm

The correct answer is C


4 0
3 years ago
When visiting some countries, you may see a person balancing a load on the head. Explain why the center of mass of the load need
Vinvika [58]

Explanation:

If the center of the load is directly above the vertebrae, there is no torque in the system. This is a good thing so that the vertebrae are not put out of alignment over time. (Of course, this still doesn't prevent compression of the vertebrae over time, which is a possibility.)

3 0
3 years ago
A merry-go-round spins freely when Diego moves quickly to the center along a radius of the merry-go-round. As he does this, it i
lianna [129]

Answer:

<em>A) the moment of inertia of the system decreases and the angular speed increases. </em>

Explanation:

The complete question is

A merry-go-round spins freely when Diego moves quickly to the center along a radius of the  merry-go-round. As he does this, It is true to say that

A) the moment of inertia of the system decreases and the angular speed increases.

B) the moment of inertia of the system decreases and the angular speed decreases.

C) the moment of inertia of the system decreases and the angular speed remains the same.

D) the moment of inertia of the system increases and the angular speed increases.

E) the moment of inertia of the system increases and the angular speed decreases

In angular momentum conservation, the initial angular momentum of the system is conserved, and is equal to the final angular momentum of the system. The equation of this angular momentum conservation is given as

I_{1} w_{1} = I_{2} w_{2}    ....1

where I_{1} and I_{2} are the initial and final moment of inertia respectively.

and w_{1} and w_{2} are the initial and final angular speed respectively.

Also, we know that the moment of inertia of a rotating body is given as

I = mr^{2}    ....2

where m is the mass of the rotating body,

and r is the radius of the rotating body from its center.

We can see from equation 2 that decreasing the radius of rotation of the body will decrease the moment of inertia of the body.

From equation 1, we see that in order for the angular momentum to be conserved, the decrease from I_{1} to I_{2} will cause the angular speed of the system to increase from w_{1} to w_{2} .

From this we can clearly see that reducing the radius of rotation will decrease the moment of inertia, and increase the angular speed.

7 0
3 years ago
Problema en la cual aplicaste velocidades, impulso, conservación del movimiento y de la energía.
Kazeer [188]
Huh huh what? ¿Can’t you translate?
6 0
3 years ago
Other questions:
  • If you increase the force exerted on an object, what will happen to the acceleration?
    9·1 answer
  • Difference between potential energy and kinetic energy (ASAP)
    13·1 answer
  • The electric field in a region of space increases from 0 0 to 3450 N/C 3450 N/C in 4.40 s. 4.40 s. What is the magnitude of the
    14·1 answer
  • A 1.35 kg block at rest on a tabletop is attached to a horizontal spring having constant 19.8 n/m. the spring is initially unstr
    15·1 answer
  • I need this fast can you help me o give 12 points
    13·2 answers
  • In a series circuit with three bulbs,
    6·2 answers
  • You are driving a car at the 25-mi/h speed limit when you observe the light at the intersection 65 m in front of you turn yellow
    7·1 answer
  • A uniform rod of length 50cm and mass 0.2kg is placed on a fulcrum at a distance of 40cm from the left end of the rod. At what d
    12·1 answer
  • HOW DO WE HELP OTHERS NOT BE SAD IF THEY DON'T LIKE HUGS?
    9·2 answers
  • calculate the efficiency of a light bulb that had an input of 400 j transfers 100j as a light and 300j as heat.​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!