Answer:
LR is Na₃PO₄
Explanation:
A quick way to determine the limiting reactant in a process is to convert reactant values to moles and then divide by the respective coefficient of the balanced equation. The smaller number of the division is the limiting reactant. For the given reaction, the rxn ratio of reactants is 1:1 so only the smaller mole value gives limiting reactant. However, if the reaction is NOT 1:1 the one must divide by respective coefficient to identify the smallest value and the limiting reactant.
This problem:
FeCl3(aq) + Na3PO4(aq) => FePO4(s) + 3 NaCl(aq)
Given: 27.8g 61.9g
moles: 27.8g/162.2g/mole 1.9g/163.94g/mole
= 0.1714 mole = 0.0116 mole
÷ coef. => 0.1714/1 = 0.1714 => 0.0116/1 = 0.0116
smaller value is LR => => => => => => LR is Na₃PO₄
Hope this helps. Doc :-)
Answer:
p=m/v
m=mass:402g
v=volume:385ml
p=density:?
divide 402 by 385 to get 1.04 the density is 1.04ml
Density (p)= mass (g)/volume (ml)
Hydrogen bonds are not like covalent bonds. They are nowhere near as strong and you can't think of them in terms of a definite number like a valence. Polar molecules interact with each other and hydrogen bonds are an example of this where the interaction is especially strong. In your example you could represent it like this:
<span>H2C=O---------H-OH </span>
<span>But you should remember that the H2O molecule will be exchanging constantly with others in the solvation shell of the formaldehyde molecule and these in turn will be exchanging with other H2O molecules in the bulk solution. </span>
<span>Formaldehyde in aqueous solution is in equilibrium with its hydrate. </span>
<span>H2C=O + H2O <-----------------> H2C(OH)2</span>
<h2>Answer:</h2>
Option (B):
The products can form reactants, and the reactants can form products.
<h3>Explanation:</h3><h3>Reversible reaction</h3>
A reversible reaction is a reaction where the reactants form products, which react together to give the reactants back.
aA + bB ⇄ cC + dD
A and B can react to form C and D or, in the reverse reaction, C and D can react to form A and B.
Other options are wrong because off:
(A) Concentration changes with time equilibrium concentration and higher product concentration is also possible.
(C) They may be constant.
(D) Concentration changes with time equilibrium concentration and higher reactant concentration is also possible.
The answers are:
1. D
2. B if it is a check all that are true it is b & d