Here's the equation you use: Density = mass/volume
1) 5.2g/cm^3 = m/3.7cm^3
2) m = 5.2g/cm^3 x 3.7cm^3
3) m = 19.24g
You can check the answer by plugging it in
19.24g/3.7cm^3
= 5.2g/cm^3
Answer:
Ununennium.
Explanation:
Ununennium, also known as <em>eka-francium</em> or <em>element 119</em>, is the hypothetical chemical element with symbol <em>Uue</em> <em>and atomic number 119. </em> It's Mass number is [315] (predicted), as we as it is existing on the periodic table hence its symbol: <em>Uue</em>
I am only in 6th grade so all I have to say is good luck and I wish you the best on that quiz.
Hey there!
Na + FeBr₂ → NaBr + Fe
Firstly, balance Br.
Two on the left, one on the right. Add a coefficient of 2 in front of NaBr.
Na + FeBr₂ → 2NaBr + Fe
Next, balance Na.
One on the left, two on the right. Add a coefficient of 2 in front of Na.
2Na + FeBr₂ → 2NaBr + Fe
Lastly, balance Fe.
One on the left, one on the right. Already balanced.
Our final balanced equation:
2Na + FeBr₂ → 2NaBr + Fe
Hope this helps!
4.0
i think it has something to do with molar ratios and finding the limiting reactant
4.0 mol NO * 2 mol NO2/2 mol NO = 4.0 moles of NO2
4.0 mol O2 * 2 mol NO2/1 mol O2 = 8.0 moles of NO2
so the limiting reactant (the reactant that runs out the quickest leaving an excess) is NO
once the limiting reactant is found, we can use that data for that substance to calculate the amount of product
4.0 mol NO * 2 mol NO2/2 mole NO = 4.0 moles of NO2