Answer:
Explanation:
We shall apply conservation of mechanical energy .
initial kinetic energy = 1/2 m v²
= .5 x m x 12 x 12
= 72 m
This energy will be spent to store potential energy . if h be the height attained
potential energy = mgh , h is vertical height attined by block
= mg l sin20 where l is length up the inclined plane
for conservation of mechanical energy
initial kinetic energy = potential energy
72 m = mg l sin20
l = 72 / g sin20
= 21.5 m
deceleration on inclined plane = g sin20
= 3.35 m /s²
v = u - at
t = v - u / a
= (12 - 0) / 3.35
= 3.58 s
it will take the same time to come back . total time taken to reach original point = 2 x 3.58
= 7.16 s
Answer:
A chain reaction will be sustained in a sub-critical mass.
Explanation:
Hope this helps!
If not, I am sorry.
Heat lost or gained, H = mc(θ₂ - θ₁)
Where m = mass, c = Specific heat capacity, θ₂= final temperature, θ₁ = initial temperature
m = 200g, c = 0.444 J/g°C, θ₁ = 22 °C (Since it was cooled).
H = 6.9 kj = 6.9 *1000J = 6900 J
6900 = 200*0.444* (θ₂ - 22)
6900/(200*0.444) = θ₂ - 22
77.70 = θ₂ - 22
θ₂ - 22 = 77.7
θ₂ = 77.7 + 22 = 99.7
So initial temperature before cooling ≈ 100°C . Option C.
Explanation:
Given that,
Voltage of household line, V = 110 V
Power of the hairdryer, P = 1650 W
During use, the current is about 1.95 cm from the user's hand.
(a) Power is given by :

(b) Again the power is given by :

R is resistance of the dryer

(c) The magnetic field produced by the dryer at the user's hand is given by :

Hence, this is the required solution.