Answer:
(a) 1s² 2s² 2p⁶ 3s² 3p⁴
(b) 1s² 2s² 2p⁶ 3s² 3p⁵
(c) sp³
(d) No valence orbital remains unhybridized.
Explanation:
<em>Consider the SCl₂ molecule. </em>
<em>(a) What is the electron configuration of an isolated S atom? </em>
S has 16 electrons. Its electron configuration is 1s² 2s² 2p⁶ 3s² 3p⁴.
<em>(b) What is the electron configuration of an isolated Cl atom? </em>
Cl has 17 electrons. Its electron configuration is 1s² 2s² 2p⁶ 3s² 3p⁵.
<em>(c) What hybrid orbitals should be constructed on the S atom to make the S-Cl bonds in SCl₂? </em>
SCl₂ has a tetrahedral electronic geometry. Therefore, the orbital 3s hybridizes with the 3 orbitals 3 p to form 4 hybrid orbital sp³.
<em>(d) What valence orbitals, if any, remain unhybridized on the S atom in SCl₂?</em>
No valence orbital remains unhybridized.
Answer:
your carbon footprint is how often you use a car of vehical you can decreese it by riding a bike or walking.
Explanation:
Answer:
C 6 H 12 O 6 + 6O 2 → 6CO 2 + 6H 2 O + 38 ATP
Explanation:
Answer:
Photosynthesis removes carbon from the atmosphere, and cellular respiration releases carbon back into the atmosphere.
Explanation:
The first option clearly expresses the relationship between photosynthesis and cellular respiration.
Cellular respiration releases carbon back into the atmosphere whereas photosynthesis removes the carbon from the atmosphere.
Photosynthesis is the process whereby green plants manufacture their food using carbon dioxide and water.
In cellular respiration, the product of the photosynthesis is used by organisms to produce energy.
Both carbon and lead belong to Group IV elements, and thus they have the same number of valence electrons.
<span>In
each of the other options, the two elements belong to different groups,
and thus they do NOT have the same number of valence electrons.
I hope this helped you, please tell me if I am correct or not <3
</span>