The answer is 57.14%.
First we need to calculate molar mass of <span>NaHCO3. Molar mass is mass of 1 mole of a substance. It is the sum of relative atomic masses, which are masses of atoms of the elements.
Relative atomic mass of Na is 22.99 g
</span><span>Relative atomic mass of H is 1 g
</span><span>Relative atomic mass of C is 12.01 g
</span><span>Relative atomic mass of O is 16 g.
</span>
Molar mass of <span>NaHCO3 is:
22.99 g + 1 g + 12.01 g + 3 </span>· <span>16 g = 84 g
Now, mass of oxygen in </span><span>NaHCO3 is:
3 </span>· 16 g = 48 g
mass percent of oxygen in <span>NaHCO3:
48 g </span>÷ 84 g · 100% = 57.14%
Therefore, <span>the mass percent of oxygen in sodium bicarbonate is 57.14%.</span>
The standard state of the elements Nitrogen and Oxygen are N2 and O2, knowing that they are diatomic elements. With that piece of information, the unbalanced equation for the formulation of NO2(g) should be as follows -
N2 + O2 ---> NO2
And if you include their states -
N2 ( g ) + O2 ( g ) ---> NO2 ( g )
To balance this chemical equation consider the number of reactants and products on other side of the equation. If you were to include a coefficient of one - half with respect to N2 on the reactant side, it would balance the reactants and products -
Answer:
Use the activity formula,
T1/2 = 4.468 x 10^9 yr x 365 x 24 x 3600 = 1.409 x 10^17 sec
l = ln(2)/T1/2 = ln(2)/1.409 x 10^17 = 4.91932697 x 10^-18 s-1
DN/Dt = lN, 265 = 4.91932697 x 10^-18 x N
<u><em>N = 5.38 x 10^19 nuclei</em></u>
Water can be turned to ice if to cold gas if to hot
ice can turn to water if to hot and stay the same if to cold
gas will turn to water if to hot and freeze to ice if to cold and the pattern keeps going like that.
hope this helps