Answer:
An atom consists of a positively charged nucleus, surrounded by one or more negatively charged particles called electrons. The positive charges equal the negative charges, so the atom has no overall charge; it is electrically neutral. ... The nucleus of an atom contains protons and neutrons
Explanation:
How difficult it is to change an objects motion. Think of a tablecloth; it takes energy to move it from underneath objects on the table, and it takes energy to move the objects themselves on the table.
Answer: 1) Maximum mass of ammonia 198.57g
2) The element that would be completely consumed is the N2
3) Mass that would keep unremained, is the one of the excess Reactant, that means the H2 with 3,44g
Explanation:
- In order to calculate the Mass of ammonia , we first check the Equation is actually Balance:
N2(g) + 3H2(g) ⟶2NH3(g)
Both equal amount of atoms side to side.
- Now we verify which reagent is the limiting one by comparing the amount of product formed with each reactant, and the one with the lowest number is the limiting reactant. ( Keep in mind that we use the molecular weight of 28.01 g/mol N2; 2.02 g/mol H2; 17.03g/mol NH3)
Moles of ammonia produced with 163.3g N2(g) ⟶ 163.3g N2(g) x (1mol N2(g)/ 28.01 g N2(g) )x (2 mol NH3(g) /1 mol N2(g)) = 11.66 mol NH3
Moles of ammonia produced with 38.77 g H2⟶ 38.77 g H2 x ( 1mol H2/ 2.02 g H2 ) x (2 mol NH3 /3 mol H2 ) = 12.79 mol NH3
- As we can see the amount of NH3 formed with the N2 is the lowest one , therefore the limiting reactant is the N2 that means, N2 is the element that would be completey consumed, and the maximum mass of ammonia will be produced from it.
- We proceed calculating the maximum mass of NH3 from the 163.3g of N2.
11.66 mol NH3 x (17.03 g NH3 /1mol NH3) = 198.57 g NH3
- In order to estimate the mass of excess reagent, we start by calculating how much H2 reacts with the giving N2:
163.3g N2 x (1mol N2/28.01 g N2) x ( 3 mol H2 / 1 mol N2)x (2.02 g H2/ 1 mol H2) = 35.33 g H2
That means that only 35.33 g H2 will react with 163.3g N2 however we were giving 38.77g of H2, thus, 38.77g - 35.33 g = 3.44g H2 is left
Answer: E
Explanation:
The lattice energy is the energy change when one mole of a crystal is formed from its components ions in its gaseous sate
Therefore lattice energy = heat of Sublimation+ ionization energy +electron affinity-(heat of formation)
Therefore lattice Energy = 109 +495 -328 +570.
Lattice energy = --923kjmol-1
Answer:
The answer is below
Explanation:
The separation technique is used for separating immiscible liquids.
When separating, the stopper has to be removed when draining the lower layer so as to prevent a vacuum. If vacuum is allowed, the draining rate will reduce and stop.
The liquid should be mixed by shaking the funnel and then opening the stopcock so as the vent out gases.
When near interface between the layers, you should set your eye level so that you do not drain up to the second layer.
After completely draining the first layer, the second layer should be collected in a new flask.
After mixing the solutions in a separatory funnel, the stopper should be removed and the liquid should be mixed thoroughly and the layers allowed to separate. When you get close to the interface between the layers, get eye level with the funnel and slow the draining until the first layer is collected. Switch to a new flask to collect the second layer.