1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tpy6a [65]
3 years ago
11

For a steady two-dimensional flow, identify the boundary layer approximations.

Physics
1 answer:
Georgia [21]3 years ago
4 0

Answer:

  • The velocity component in the flow direction is much larger than that in the normal direction ( A )
  • The temperature and velocity gradients normal to the flow are much greater than those along the flow direction ( b )

Explanation:

For a steady two-dimensional flow the boundary layer approximations are The velocity component in the flow direction is much larger than that in the normal direction and The temperature and velocity gradients normal to the flow are much greater than those along the flow direction

assuming Vx ⇒ V∞ ⇒ U and Vy ⇒ u from continuity equation we know that

Vy << Vx

You might be interested in
Using the same cost and time estimates, consider any trade-offs that SciTech may have to make to complete the project.
ch4aika [34]

Answer:  

Oracio is the most cost-effective choice because he would cost the least to complete the project. However, he would also take the longest amount of time. Camilla could complete the job the fastest, but she costs more than Oracio. SciTech will have to decide if it is more important to save money or complete the work quickly to meet the deadline.  

Hope this helps :)

4 0
3 years ago
Read 2 more answers
which planet should punch travel to if his goal is to weigh in at 118 lb? refer to the table of planetary masses and radii given
Harrizon [31]

The planet that Punch should travel to in order to weigh 118 lb is Pentune.

<h3 /><h3 /><h3>The given parameters:</h3>
  • Weight of Punch on Earth = 236 lb
  • Desired weight = 118 lb

The mass of Punch will be constant in every planet;

W = mg\\\\m = \frac{W}{g}\\\\m = \frac{236}{g}

The acceleration due to gravity of each planet with respect to Earth is calculated by using the following relationship;

F = mg = \frac{GmM}{R^2} \\\\g = \frac{GM}{R^2}

where;

  • M is the mass of Earth = 5.972 x 10²⁴ kg
  • R is the Radius of Earth = 6,371 km

For Planet Tehar;

g_T =\frac{G \times 2.1M}{(0.8R)^2} \\\\g_T = 3.28(\frac{GM}{R^2} )\\\\g_T = 3.28 g

For planet Loput:

g_L =\frac{G \times 5.6M}{(1.7R)^2} \\\\g_L = 1.94(\frac{GM}{R^2} )\\\\g_L = 1.94g

For planet Cremury:

g_C =\frac{G \times 0.36M}{(0.3R)^2} \\\\g_C = 4(\frac{GM}{R^2} )\\\\g_C = 4 g

For Planet Suven:

g_s =\frac{G \times 12M}{(2.8R)^2} \\\\g_s = 1.53(\frac{GM}{R^2} )\\\\g_s = 1.53 g

For Planet Pentune;

g_P =\frac{G \times 8.3 }{(4.1R)^2} \\\\g_P = 0.5(\frac{GM}{R^2} )\\\\g_P = 0.5 g

For Planet Rams;

g_R =\frac{G \times 9.3M}{(4R)^2} \\\\g_R = 0.58(\frac{GM}{R^2} )\\\\g_R = 0.58 g

The weight Punch on Each Planet at a constant mass is calculated as follows;

W = mg\\\\W_T = mg_T\\\\W_T = \frac{236}{g} \times 3.28g = 774.08 \ lb\\\\W_L = \frac{236}{g} \times 1.94g =457.84 \ lb\\\\ W_C = \frac{236}{g}\times 4g = 944 \ lb \\\\ W_S = \frac{236}{g} \times 1.53g = 361.08 \ lb\\\\W_P = \frac{236}{g} \times 0.5 g = 118 \ lb\\\\W_R = \frac{236}{g} \times 0.58 g = 136.88 \ lb

Thus, the planet that Punch should travel to in order to weigh 118 lb is Pentune.

<u>The </u><u>complete question</u><u> is below</u>:

Which planet should Punch travel to if his goal is to weigh in at 118 lb? Refer to the table of planetary masses and radii given to determine your answer.

Punch Taut is a down-on-his-luck heavyweight boxer. One day, he steps on the bathroom scale and "weighs in" at 236 lb. Unhappy with his recent bouts, Punch decides to go to a different planet where he would weigh in at 118 lb so that he can compete with the bantamweights who are not allowed to exceed 118 lb. His plan is to travel to Xobing, a newly discovered star with a planetary system. Here is a table listing the planets in that system (<em>find the image attached</em>).

<em>In the table, the mass and the radius of each planet are given in terms of the corresponding properties of the earth. For instance, Tehar has a mass equal to 2.1 earth masses and a radius equal to 0.80 earth radii.</em>

Learn more about effect of gravity on weight here: brainly.com/question/3908593

5 0
2 years ago
which religious group did not expand their membership by great numbers during the Second Great Awakening
Dimas [21]

Answer:

The Catholics.

Explanation:

see answer.

4 0
3 years ago
A 1.2 KG rubber ball is being thrown in the air if the ball is traveling at 2.0 M/S when it is 3.0 M off the ground what is the
Vitek1552 [10]

Answer:

37.7 J

Hope this helps! (see pictures)

6 0
3 years ago
Which of the following must be true for “P if and only if Q” to be true?
erastovalidia [21]
Explain or message me what your trying to ask!

6 0
4 years ago
Other questions:
  • Which of the following will receive electrical impulses next, after the structure indicated by the red arrow?
    8·1 answer
  • A jack for a car requires a force of 120 lbs to lift a 3,000 lb car. what is the ratio of the cars weight to the force required
    15·1 answer
  • Carnot engine A has an efficiency of 0.57, and Carnot engine B has an efficiency of 0.72. Both engines utilize the same hot rese
    10·1 answer
  • Jon recently drove to visit his parents who live 648 miles away. On his way there his average speed was 14 miles per hour faster
    10·2 answers
  • A 1kg object loses 20 j of gpe as it falls how far does it fall
    12·1 answer
  • Which of the three types of equations follows the law of conservation of mass?
    15·1 answer
  • A ball is thrown up with a speed of 15m/s. How high will it go before it begins to fall? ( g = 10m/s2 )
    7·1 answer
  • Pls help i’ll give brainliest if you give a correct answer!!
    15·2 answers
  • How long will it take to travel 2000 Km at 500 Km<br> a.100,000 hr<br> b.2500 Km<br> c.4 hr
    14·1 answer
  • How are systems different from industries? Use an example to support your answer.
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!