Explanation:
(a) Draw a free body diagram of the cylinder at the top of the loop. At the minimum speed, the normal force is 0, so the only force is weight pulling down.
Sum of forces in the centripetal direction:
∑F = ma
mg = mv²/RL
v = √(g RL)
(b) Energy is conserved.
EE = KE + RE + PE
½ kd² = ½ mv² + ½ Iω² + mgh
kd² = mv² + Iω² + 2mgh
kd² = mv² + (m RC²) ω² + 2mg (2 RL)
kd² = mv² + m RC²ω² + 4mg RL
kd² = mv² + mv² + 4mg RL
kd² = 2mv² + 4mg RL
kd² = 2m (v² + 2g RL)
d² = 2m (v² + 2g RL) / k
d = √[2m (v² + 2g RL) / k]
Answer:
14 hours 18 minutes.
Explanation:
ratio of number of orbits, so it completes 7 orbits in the time Janus does 6.
(16*60+41)*6/7=858 minutes or 14 hours 18 minutes
Answer:
k = 17043.5 N/m = 17.04 KN/m
Explanation:
First we need to find the force applied by safe pn the spring:
F = Weight of Safe
F = mg
where,
F = Force Applied by the safe on the spring = ?
m = mass of safe = 800 kg
g = 9.8 m/s²
Therefore,
F = (800 kg)(9.8 m/s²)
F = 7840 N
Now, using Hooke's Law:
F = kΔx
where,
K = Spring Constant = ?
Δx = compression = 46 cm = 0.46 m
Therefore,
7840 N = k (0.46 m)
k = 7840 N/0.46 m
<u>k = 17043.5 N/m = 17.04 KN/m</u>
Answer:
Time taken, 
Explanation:
It is given that, a small metal ball is suspended from the ceiling by a thread of negligible mass. The ball is then set in motion in a horizontal circle so that the thread’s trajectory describes a cone as shown in attached figure.
From the figure,
The sum of forces in y direction is :


Sum of forces in x direction,

.............(1)
Also, 
Equation (1) becomes :

...............(2)
Let t is the time taken for the ball to rotate once around the axis. It is given by :

Put the value of T from equation (2) to the above expression:


On solving above equation :

Hence, this is the required solution.
2 is the answer have a nice day <3