The final velocity of the two pucks is -5 m/s
Explanation:
We can solve the problem by using the law of conservation of momentum.
In fact, in absence of external force, the total momentum of the two pucks before and after the collision must be conserved - so we can write:

where
is the mass of each puck
is the initial velocity of the 1st puck
is the initial velocity of the 2nd puck
v is the final velocity of the two pucks sticking together
Re-arranging the equation and solving for v, we find:

Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
The metric unit of force is Newton or N. The Newton unit is also equal
to kilogram per meter per second squared. The Newton name came from the late
physicist Isaac Newton. It is also based on the second law of motion.
B. third
for every action there is a reaction*
Given:
m = 4 kg, the mass of the object
h = 5 m, distance fallen
Neglect air resistance.
The PE (potential energy) is
PE = mgh = (4 kg)*(9.8 m/s²)*(5 m) = 196 J
The PE is converted into KE (kinetic energy) after the fall.
Therefore the PE decreased by 196 J ≈ 200 J
Answer: d. It has decreased by 200 J
Answer:
Load
Explanation:
A normal power supply can deliver up to certain amount of power to a load. The output power can be calculated multiplying Voltage (V) x Current (A). It happens that after a certain period of time, the power source's main components begin to wear, thus losing its ability to deliver its nominal power. Normally, when no load its connected to the source, you will get the operating Voltage, but when the load demands power, the ability to deliver power to it may fail to reach nominal levels. When connected, there may be voltage drops (thus, less power output) causing malfunctions turning it into a non-operative power supply.