Answer:
The average speed of the earth in its orbit is 
Explanation:
The average distance between the Earth and the Sun is
.
The average speed of the earth in its orbit can be found by the next equation :
(1)
Where r is the radius and T is the period.
In this case, the orbit of the Earth can be considered as a circle
(
) instead of an ellipse.
It takes 1 year to the Earth to make one revolution around the Sun. Therefore, its period will be 365.25 days.
Notice that to express the period in terms of seconds, the following is needed:
⇒ 
Then, equation 1 can be used:


Answer:
Explanation:
Given
time taken 
Speed acquired in 2 sec 
Here initial velocity is zero 
acceleration is the rate of change of velocity in a given time


Distance travel in this time

where
s=displacement
u=initial velocity
a=acceleration
t=time


so Jet Plane travels a distance of 42 m in 2 s
<h2>
Entire trip takes 1.22 seconds.</h2>
Explanation:
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Time, t = 0.866 s
Substituting
s = ut + 0.5 at²
s = 0 x 0.866 + 0.5 x 9.81 x 0.866²
s = 3.68 m
Halfway is 3.68 m
Total height = 2 x 3.68 = 7.36 m
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Time, t = ?
Displacement, s = 7.36 m
Substituting
s = ut + 0.5 at²
7.36 = 0 x t + 0.5 x 9.81 x t²
t = 1.22 s
Entire trip takes 1.22 seconds.
Answer
Given,
refractive index of film, n = 1.6
refractive index of air, n' = 1
angle of incidence, i = 35°
angle of refraction, r = ?
Using Snell's law
n' sin i = n sin r
1 x sin 35° = 1.6 x sin r
r = 21°
Angle of refraction is equal to 21°.
Now,
distance at which refractive angle comes out
d = 2.5 mm
α be the angle with horizontal surface and incident ray.
α = 90°-21° = 69°
t be the thickness of the film.
So,


t = 2.26 mm
Hence, the thickness of the film is equal to 2.26 mm.