1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kozerog [31]
3 years ago
15

(a) The electric potential due to a point charge is given by V = kq⁄r where q is the charge, r is the distance from q and k = 8.

99 × 109 ????m2 C 2 ⁄ . Show, in detail, that the SI unit of electric potential is a volt. ( b ) What are the equipotential lines? (c) How are equipotential lines used to obtain the electric field lines? (
Physics
1 answer:
LiRa [457]3 years ago
4 0

Answer:

a)  [volts] = [N m / C],

b) The lines or surface that has the same potential are called equipotential

c) the equipotential lines must also be perpendicular to the electric field lines

Explanation:

a) find the units of the volt

the electric potential energy is

             V = k q / r

             V = [N m² / C²] C / m

              V = [N m / C]

The electric potential is defined as

             V = E .s

             V = [N / C] [m]

             V = [N m / C] = [volt]

we see that in the two expressions the same result is obtained therefore the volt is

            [volts] = [N m / C]

b) The lines or surface that has the same potential are called equipotential surfaces, the great utility of these lines or surfaces is that a face can be displaced on it without doing work.

c) The electric potential is defined as the gradient of the electric field

             v =  - \frac{dE}{dx} i^

therefore the equipotential lines must also be perpendicular to the electric field lines

You might be interested in
Have the highest birth rate
Sveta_85 [38]

Answer:

353225

Explanation:8uhhhhhhhhhlkgg

3 0
3 years ago
A jogger runs 20 mi West and then 6.0 mi North. Find the magnitude and direction of the resultant displacement.
Black_prince [1.1K]

Answer:

The magnitude of the resultant displacement is 21 mi and its direction is 16.7° north of west

Explanation:

Hi there!

Please see the figure for a better understanding of the problem. The total displacement vector will be the sum of both displacements:

The vector for the first displacement is:

First displacement = (20 mi, 0)

The second displacement:

Second displacement = (0, 6.0 mi)

The resultant displacement will be:

R = (20 mi, 0) + (0, 6.0 mi) = (20 mi + 0, 0 + 6.0 mi) = (20 mi, 6.0 mi)

The magnitude of this vector will be:

|R| = \sqrt{(20 mi)^{2} + (6.0 mi)^{2}} = 21 mi

The magnitude of the vector displacement is 21 mi.

To find the direction of the vector R, we have to apply trigonometry:

In a right triangle the following trigonometric rule applies:

cos θ = adjacent side to the angle/ hypotenuse

In this case:

cos θ = 20 mi / magnitude of R

θ = 16.7°

The direction of the vector is 16.7° north of west.

4 0
3 years ago
A capacitor with an initial potential difference of 185 V is discharged through a resistor when a switch between them is closed
GrogVix [38]

Answer:

  • a. \tau =  2.1161 s
  • b. V(18.8 \ s) = 0.0256 \ V

Explanation:

<h3>a.</h3>

The equation for the voltage V of  discharging capacitor in an RC circuit at time t is:

V(t) = V_0 e^{(- \frac{t}{\tau}) }

where V_0 is the initial voltage, and \tau is the time constant.

For our problem, we know

V_0 = 185 \ V

and

V(10 \ s) = V_0 e^{(- \frac{10 \ s}{\tau}) } = 1.64 \ V

So

185 \ V \ e^{(- \frac{10 \ s}{\tau}) } = 1.64 \ V

e^{(- \frac{10 \ s}{\tau}) } = \frac{1.64 \ V}{ 185 \ V }

ln (e^{(- \frac{10 \ s}{\tau}) } ) = ln (\frac{1.64 \ V}{ 185 \ V })

- \frac{10 \ s}{\tau}  = ln (\frac{1.64 \ V}{ 185 \ V })

\tau =  \frac{-10 \s}{ln (\frac{1.64 \ V}{ 185 \ V }) }

This gives us

\tau =  2.1161 s

and this is the time constant.

<h3>b.</h3>

At t = 18.8 s we got:

V(18.8 \ s) = 185 \ V  \ e^{(- \frac{18.8 \ s}{2.1161 s}) }

V(18.8 \ s) = 185 \ V \ e^{(- \frac{18.8 \ s}{2.1161 s}) }

V(18.8 \ s) = 0.0256 \ V

4 0
3 years ago
A 295-kg object and a 595-kg object are separated by 4.10 m.
kodGreya [7K]

Answer:

a)F=3 x 10⁻⁷ N

b)x=2.405 m

Explanation:

Given that

m₁=295 kg

m₂=595 kg

d= 4.1 m

a)

m₃=63 kg

r=d/2 = 2.05 m

The force between the mass m₁ and m₃

F_{13}=\dfrac{Gm_1m_3}{r^2}

by putting the values

F_{13}=\dfrac{Gm_1m_3}{r^2}

F_{13}=\dfrac{6.67\times 10^{-11}\times 295\times 63 }{2.05^2}

F₁₃=2.94 x 10⁻⁷ N

The force  between the mass m₂ and m₃

by putting the values

F_{23}=\dfrac{Gm_2m_3}{r^2}

F_{23}=\dfrac{6.67\times 10^{-11}\times 595\times 63 }{2.05^2}

F₂₃=5.94 x 10⁻⁷ N

The net force F

F= F₂₃- F₁₃

F=5.94 x 10⁻⁷ N-2.94 x 10⁻⁷ N

F=3 x 10⁻⁷ N

b)

Lest take at distance x from mass m₂ net force is zero.

F_{23}=\dfrac{Gm_2m_3}{x^2}

F_{13}=\dfrac{Gm_1m_3}{(4.1-x)^2}

Form above two equation

\dfrac{Gm_1m_3}{(4.1-x)^2}=\dfrac{Gm_2m_3}{x^2}

\dfrac{m_1}{(4.1-x)^2}=\dfrac{m_2}{x^2}

\dfrac{295}{(4.1-x)^2}=\dfrac{595}{x^2}

x²=2.01(4.1-x)²

x=1.42 (4.1-x)

x=5.82 - 1.42x

x=2.405 m

4 0
3 years ago
6° with the horizontal) at a steady speed of 4.0 m/s. Assuming a total mass of 75 kg (bicycle and Kasek), what must be Kasek's p
denpristay [2]

Answer:

Power, P = 307.31 W

Explanation:

It is given that,

Kasek climb at an angle of 6° with the horizontal at a steady speed of 4.0 m/s.

The total mass of bicycle and Kasek is 75 kg

We need to find the Kasek's power output to climb the same hill at the same speed. The angle is made with the horizontal. It means that,

F = F sinθ

So,

Power output is given by :

P=mg\sin\theta\times v\\\\P=75\times 9.8\times \sin(6)\times 4\\\\P=307.31\ W

So, Kasek's power output to climb the same hill is 307.31 W.

3 0
3 years ago
Other questions:
  • How are climate and weather related?
    9·1 answer
  • Where is the center of gravity if the 9.00 kg mass of the barbell itself is taken into account?
    10·1 answer
  • Which of the following represents a chemical change? (1 point)
    14·1 answer
  • What happens when someone is walking across the carpeted room then touches a metal door knob
    11·1 answer
  • In a skating stunt known as "crack-the-whip," a number of skaters hold hands and form a straight line. They try to skate so that
    14·1 answer
  • HELP!!!! WILL MARK BRAINLIEST!!
    7·1 answer
  • The diagram shows forces acting on a boat.
    14·1 answer
  • What type of image is formed by the following mirror?
    10·1 answer
  • How can the rate of evaporation of a liquid be increased?​
    13·2 answers
  • HEYYYY!! PLEASE HELP!!! Describe three machines that humans have designed and explain how the mechanical advantage is used.!!
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!