Answer:
Aphelion: 6404 W/m2
Perihelion: 14978 W/m2
Explanation:
The solar energy flux depends on the solar power output divided by the surface of a sphere with a radius equal to the distance to the Sun.

The distances we need are the aphelion and perihelion of Mercury.
Planetary orbits are ellipses. In an ellipse the eccentricity is related to linear eccentricity and the length of the semi major axis:

Where
e: eccentricity
c: linear eccentricity
a: semi major axis
The linear eccentricity is equal to the distance of the focus of the center of the ellipse.

a = 0.39 AU = 5.83e10 m

In planetary orbits the Sun is in one of the fucuses. With this we can calculate the prihelion and aphelion as:
Ap = a + c = 5.83e10 + 1.22e10 = 7.05e10 m
Pe = a - c = 5.83e10 - 1.22e10 = 4.61e10 m
And the solar energy fluxes will be:


Answer:
F=(-4.8*10^22,0,0) N
Explanation:
<u>Given :</u>
We are given the magnitude of the momentum of the planet and let us call this momentum (p_now) and it is given by p_now = 2.60 × 10^29 kg·m/s. Also, we are given the force exerted on the planet F = 8.5 × 10^22 N. and the angle between the planet and the star is Ф = 138°
Solution :
We are asked to find the parallel component of the force F The momentum here is not constant, where the planet moving along a curving path with varying speed where the rate change in momentum and the force may be varying in magnitude and direction. We divide the force here into two parts: a parallel force F to the momentum and a perpendicular force F' to the momentum.
The parallel force exerted to the momentum will speed or reduce the velocity of the planet and does not change its moving line. Let us apply the direction cosines, we could obtain the parallel force as next
F=|F|cosФp (1)
Where the parallel force F is in the opposite direction of p as the angle between them is larger than 90°. Now we can plug our values for 0 and I F I into equation (1) to get the parallel force to the planet
F=|F|cosФp
=-4.8*10^22 N*p
<em>As this force is in one direction, we could get its vector as next </em>
F=(-4.8*10^22,0,0) N
F=(0,-4.8*10^22,0) N
F=(0,0-4.8*10^22) N
The cosine of 138°, the angle between F and p is, is a negative number, so F is opposite to p. The magnitude of the planet's momentum will decrease.
The final velocity after the collision is 8.2 m/s
Explanation:
We can solve this problem by using the law of conservation of momentum: in fact, if we consider the system to be isolated (=no external unbalanced forces), the total momentum of the raindrop+mosquito must be conserved before and after the collision.
If the collision is perfectly inelastic, moreover, the raindrop and the mosquito stick together and travel at the same velocity v after the collision.
Mathematically:
where:
is the mass of the first mosquito
is the initial velocity of the mosquito
is the mass of the raindrop
is the initial velocity of the raindrop
is the final combined velocity of the raindrop+mosquito
Re-arranging the equation and substituting, we find:

Learn more about momentum here:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Work has not been done as there is no distance moved. Work done is equal to force*distance
Answer:
D- Only the 2nd law of thermodynamics
Explanation:
It violates 2nd law because according to 2nd law of thermodynamics, it is impossible that the sole result of a process is is to absorb energy and do equivalent amount of work. so some heat must lose to surrounding which is not specified here. so it violates 2nd law.
so option D is correct