True the elements are ordered in the atomic number
To solve this exercise it is necessary to apply the equations related to the magnetic moment, that is, the amount of force that an image can exert on the electric currents and the torque that a magnetic field exerts on them.
The diple moment associated with an iron bar is given by,

Where,
Dipole momento associated with an Atom
N = Number of atoms
y previously given in the problem and its value is 2.8*10^{-23}J/T


The number of the atoms N, can be calculated as,

Where
Density
Molar Mass
A = Area
L = Length
Avogadro number


Then applying the equation about the dipole moment associated with an iron bar we have,



PART B) With the dipole moment we can now calculate the Torque in the system, which is



<em>Note: The angle generated is perpendicular, so it takes 90 ° for the calculation made.</em>
Answer: 20 kgm/s
Explanation:
Given that M1 = M2 = 10kg
V1 = 5 m/s , V2 = 3 m/s
Since momentum is a vector quantity, the direction of the two object will be taken into consideration.
The magnitude of their combined
momentum before the crash will be:
M1V1 - M2V2
Substitute all the parameters into the formula
10 × 5 - 10 × 3
50 - 30
20 kgm/s
Therefore, the magnitude of their combined momentum before the crash will be 20 kgm/s
The solution is 22 2(n+3)-4&6
Answer:
a
The radial acceleration is 
b
The horizontal Tension is 
The vertical Tension is 
Explanation:
The diagram illustrating this is shown on the first uploaded
From the question we are told that
The length of the string is 
The mass of the bob is 
The angle made by the string is 
The centripetal force acting on the bob is mathematically represented as

Now From the diagram we see that this force is equivalent to
where T is the tension on the rope and v is the linear velocity
So

Now the downward normal force acting on the bob is mathematically represented as

So

=> 
=> 
The centripetal acceleration which the same as the radial acceleration of the bob is mathematically represented as

=> 
substituting values


The horizontal component is mathematically represented as

substituting value

The vertical component of tension is

substituting value

The vector representation of the T in term is of the tension on the horizontal and the tension on the vertical is

substituting value
![T = [(0.3294) i + (3.3712)j ] \ N](https://tex.z-dn.net/?f=T%20%20%3D%20%5B%280.3294%29%20i%20%20%2B%20%283.3712%29j%20%5D%20%5C%20%20N)