I believe the answer is C
Hope this helps :)
Answer:
The answer is β=0,85 rads
Explanation:
As the ladder is leaning against the building, we can imagine there´s a triangle where 20ft is the hypotenuse and 15ft is the maximum vertical distance between the ladder and the ground, it means, the leg opposite to β which is the angle we need
Let β(betha) be the angle between the ladder and the ground
We also know that 
In this case we will need to find β, this way:

Then β=48,6°
We also have that 2πrads is equal to 360°, in this way we find how much β is in radians:

then we find β=0,85rads
Answer: 0.1 m/s
Explanation:
Use formula,
v = f * w where, v is speed, f is frequency and w is wavelength.
Now,
v = 2 * 5 * 10 ^ -2 ( Remember to convert all the units to SI units. Here 5 cm becomes 5 * 10 ^ -2 m. )
v = 0.1 m/s.
348.34 m/s. When Superman reaches the train, his final velocity will be 348.34 m/s.
To solve this problem, we are going to use the kinematics equations for constant aceleration. The key for this problem are the equations
and
where
is distance,
is the initial velocity,
is the final velocity,
is time, and
is aceleration.
Superman's initial velocity is
, and he will have to cover a distance d = 850m in a time t = 4.22s. Since we know
,
and
, we have to find the aceleration
in order to find
.
From the equation
we have to clear
, getting the equation as follows:
.
Substituting the values:

To find
we use the equation
.
Substituting the values:
