Answer:
Explanation:
As we know that first ice will convert into water
then water will heat to 100 degree celcius and then it will converted into vapor and then its temperature is raised to 110 degree C
First we will find the heat to take the ice at 0 degree and then convert it into water
Now heat required to take it to 100 Degree then convert into vapor and then raise temperature to 110 degree
So total heat required is given as
No it does not have a timing belt
Answer:
<em>the mass of one helium nucleus should be</em> <em>less than the mass of four hydrogen nuclei.</em>
Explanation:
Deep inside the core of the Sun, enough protons can collide into each other with enough speed that they stick together to form a helium nucleus and generate a tremendous amount of energy at the same time. This process is called nuclear fusion.
The mass-to-energy conversion is described by Einstein's famous equation:
E = mc2, or, in words, energy equals mass times the square of the velocity of light. Because the velocity of light is a very large number, this equation says that lots of energy can be gained from using up a modest amount of mass.
Photons In the proton-proton chain reaction, hydrogen nuclei are converted to helium nuclei through a number of intermediates. The reactions produce high-energy photons (gamma rays) that move through the "radiative layer" surrounding the core. This layer takes up 60 percent of the radius of the Sun. It takes a million years for energy to get through this layer into the "convective layer", because the photons are constantly intercepted, absorbed and re-emitted. In the core, the helium nuclei make up 62% of the mass (the rest is still hydrogen). The radiative and convective layers have about 72% hydrogen, 26% helium, and 2% heavier elements (by mass). The energy produced by fusion is then transported to the solar surface and emitted as light or ejected as high-energy particles.
Answer:
ionic bonds formed from the electrostatic attraction between oppositely charged ions in a chemical compound.
Explanation: