Answer:
Since with LiBr no precipitation takes place. So, Ag+ is absent
When we add Li2SO4 to it, precipitation takes place.
Ca2+(aq) + SO42-(aq) ----> CaSO4(s) ...Precipitate
Thus, Ca2+ is present.
When Li3PO4 is added, again precipitation takes place.Reaction is:
Co2+(aq) + PO43-(aq)---->Co3(PO4)2(s) ... Precipitate
A. Ca2+ and Co2+ are present in solution
B. Ca2+(aq) + SO42-(aq) ----> CaSO4(s)
C. 3Co2+(aq) + 2PO43-(aq)---->Co3(PO4)2(s)
Explanation:
the molar mass of a compound can be caucaleted by adding the standar atomic masses.
Answer:
Bases (solutions with a high pH) feel slipper, have an -OH group, and are corrosive.
Answer:
Mass in kg = 4.7*10^19 kg
Mass in tons = 5.2*10^16 tons
Explanation:
<u>Given:</u>
Total volume of sea water = 1.5*10^21 L
Mass % NaCl in seawater = 3.1%
Density of seawater = 1.03 g/ml
<u>To determine:</u>
Total mass of NaCl in kg and in tons
<u>Calculation:</u>
Unit conversion:
1 L = 1000 ml
The volume of seawater in ml is:



To convert mass from g to Kg:
1000 g = 1 kg

To convert mass from g to tons:
1 ton = 9.072*10^6 g

Answer:
The value of Kp at this temperature is 7.44*10⁻³
Explanation:
Chemical equilibrium is established when there are two opposite reactions that take place simultaneously at the same speed.
For the general chemical equation for a homogeneous gas phase system:
aA + bB ⇔ cC + dD
where a, b, c and d are the stoichiometric coefficients of compounds A, B, C and D, the equilibrium constant Kp is determined by the following expression:

Where Px is the partial pressure of each of the components once equilibrium has been reached and they are expressed in atmospheres. The equilibrium constant Kp depends solely on temperature and is dimensionless.
In the case of the reaction:
2 HI (g) ⇔ H₂ (g) + I₂ (g)
the equilibrium constant Kp is determined by the following expression:

The system comes to equilibrium at 425 °C, and
- PHI = 0.794 atm
- PH2 = 0.0685 atm
- PI2 = 0.0685 atm
Replacing:

Kp=7.44*10⁻³
<u><em>The value of Kp at this temperature is 7.44*10⁻³</em></u>