Answer:
(a) ΔU = 7.2x10²
(b) W = -5.1x10²
(c) q = 5.2x10²
Explanation:
From the definition of power (p), we have:
(1)
<em>where, p: is power (J/s = W (watt)) W: is work = ΔU (J) and t: is time (s) </em>
(a) We can calculate the energy (ΔU) using equation (1):
(b) The work is related to pressure and volume by:

<em>where p: pressure and ΔV: change in volume = V final - V initial </em>
(c) By the definition of Energy, we can calculate q:
<em>where Δq: is the heat transfer </em>
I hope it helps you!
The warmer temperatures at Zeke's destination caused the volume of air in his tires to increase.
<span>In physics, the law of conservation of energy states that the total energy of an isolated system remains constant—it is said to be conserved over time. Energy can neither be created nor destroyed; rather, it transforms from one form to another.</span>
1.78L x (3.00M/1L) = 5.34
When the concentrations of CO2 and H2CO3 are both horizontal lines then the rate of the forward reaction is the same as the rate of the reverse reaction.
<h3>What is rate of reaction?</h3>
The term rate of reaction refers to how fast or slow a reaction proceeds. Recall that the rate of reaction is measured from the rate of disappearance of reactants or the rate of appearance of products.
When the [CO2] and [H2CO3 ] are both horizontal lines, the rate of the forward reaction is the same as the rate of the reverse reaction.
Let us recall that the reaction is reversible hence addition of H2CO3 will increase the concentration of H2CO3, the reverse reaction would be favored.
Learn more about rate of reaction: brainly.com/question/8592296