Answer:
Second Choice.
Explanation:
Jack's Power = W/t
Jill's Power = 2W/(0.5)*t
2/0.5 = 4
Jill's Power = 4*W/t
Jill's Power is 4 times greater than Jack's
Second Choice
First of all, we need to convert the angular speed from rev/min into rev/s:

The angular acceleration is the variation of angular speed divided by the time:

And this is constant, so we can use the following equation to calculate the angle through which the engine has rotated:

so, 5 revolutions.
The popularity of modern sports help advance a society by bringing people together.
Answer:
static coefficient = 0,203 & kinetic coefficient = 0,14
Explanation:
There are two (2) conditions, when the desk is about to move and when the desk is moving. In the attachements you can see the two free body diagram for each condition.
In the first condition, there is no movement and the force is 12 N, in the image we can see the total forces are equal to 0 and by the definition of the friction force we can get the static friction coefficient.
In the second condition there is movement in the direction of the force which is equal to 8 N, again by the definition of the friction force we can get the kinetic friction coefficient. Since the desk is moving with constant velocity there is not acceleration.
Answer:
Therefore,
The magnitude of the force per unit length that one wire exerts on the other is

Explanation:
Given:
Two long, parallel wires separated by a distance,
d = 3.50 cm = 0.035 meter
Currents,

To Find:
Magnitude of the force per unit length that one wire exerts on the other,

Solution:
Magnitude of the force per unit length on each of @ parallel wires seperated by the distance d and carrying currents I₁ and I₂ is given by,

where,

Substituting the values we get


Therefore,
The magnitude of the force per unit length that one wire exerts on the other is
